
USO DI DATABASE ASTRONOMICI PER ESPERIENZE DI LABORATORIO

CORSO DI FORMAZIONE DI ASTRONOMIA E ASTROFISICA

PER DOCENTI DI SCUOLA SECONDARIA

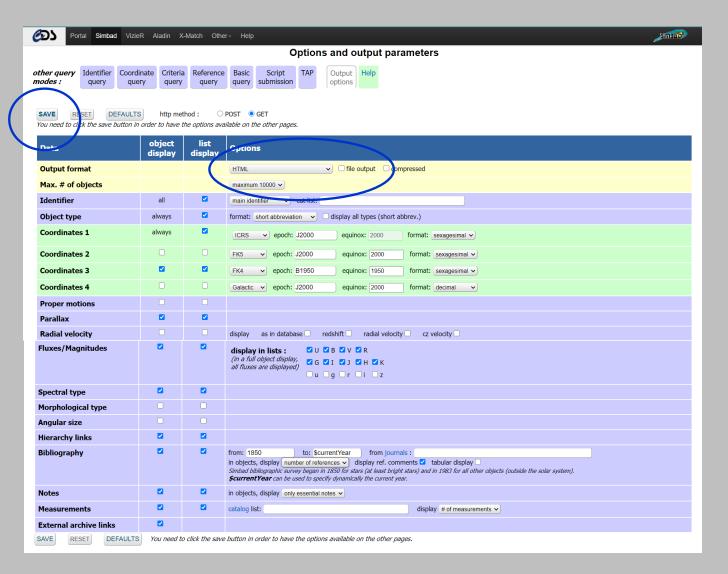
ANNO 2020-2021

SIMBAD

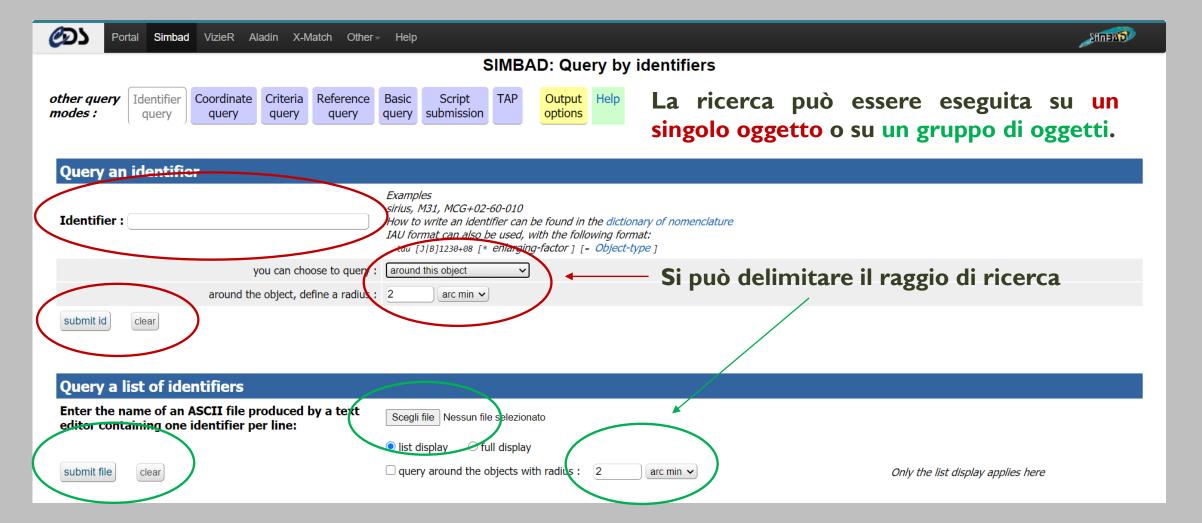
SIMBAD - http://simbad.u-strasbg.fr/simbad/

SIMBAD - OPTIONS

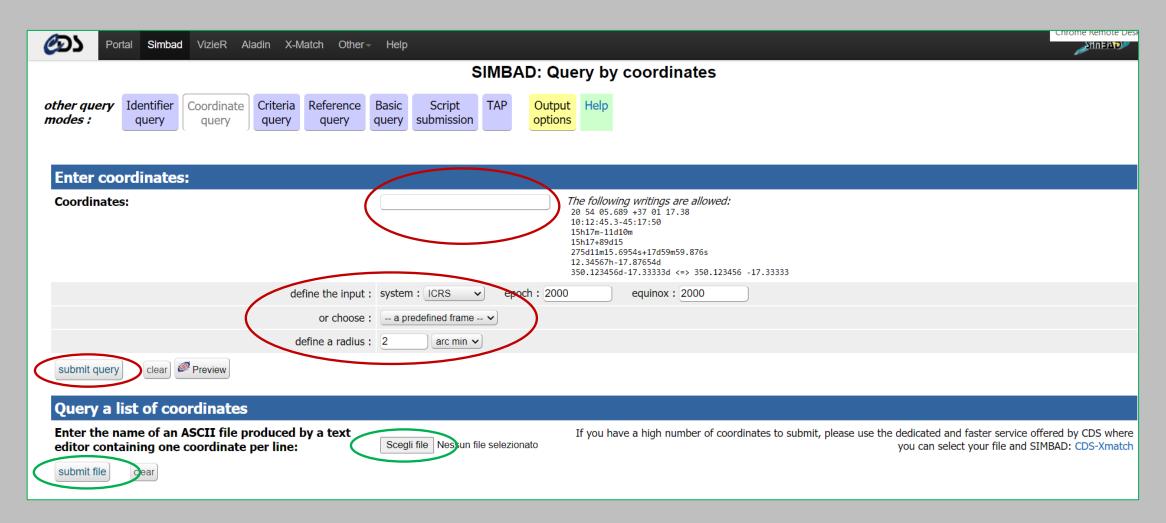
Dati forniti sempre da SIMBAD:

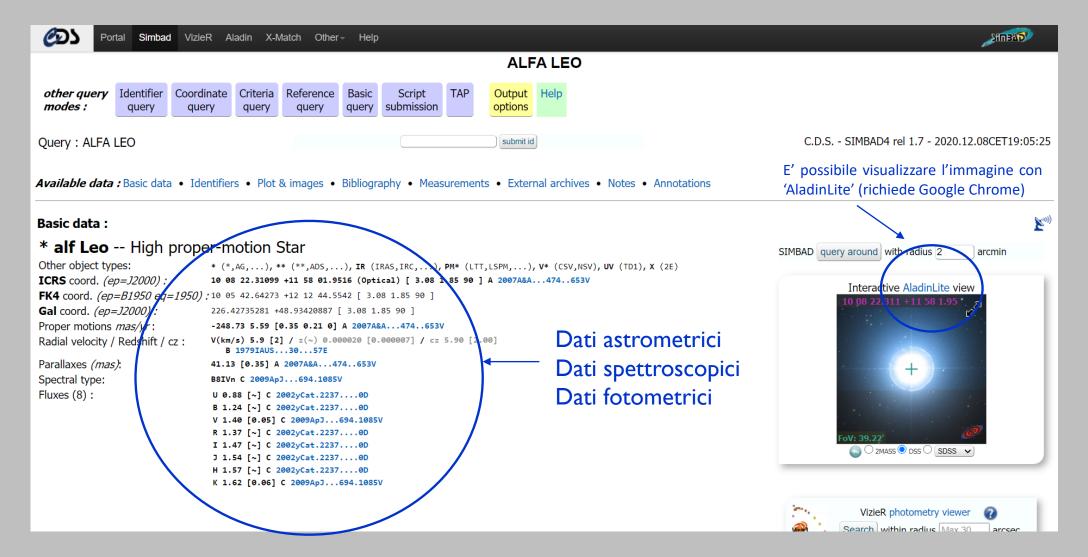

- Nome dell'oggetto (Identificatore)
- Tipo di oggetto (stella, variabile, doppia, galassia, ammasso, etc.
- Coordinate dell'oggetto nel sistema ICRS all'epoca 2000.0

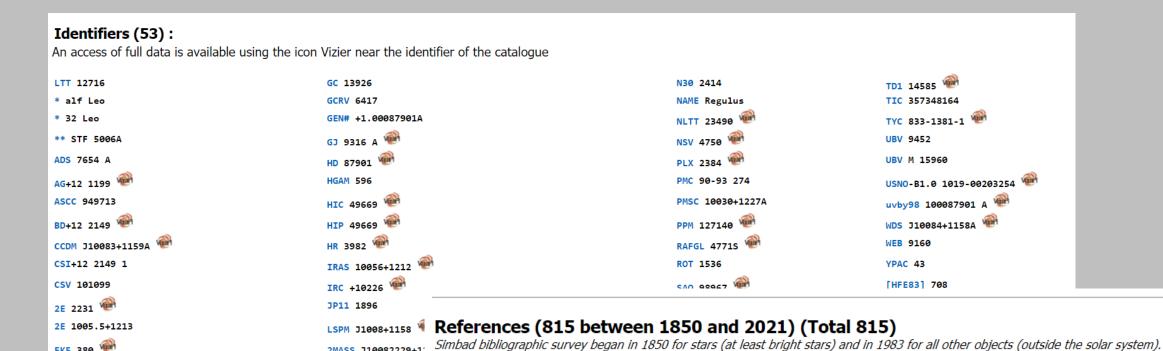
Dati selezionabili:


- Le coordinate in altri sistemi o epoche
- Dati astrometrici (moto proprio, parallasse)
- Dati spettroscopici (tipo spettrale, velocità radiale).
- Dati fotometrici (magnitudini nei vari filtri)
- Bibliografia

File di output (selezionabile in diversi formati)


SAVE: per memorizzare i parametri e i formati selezionati


RICERCA PER NOME (BY IDENTIFIER QUERY)

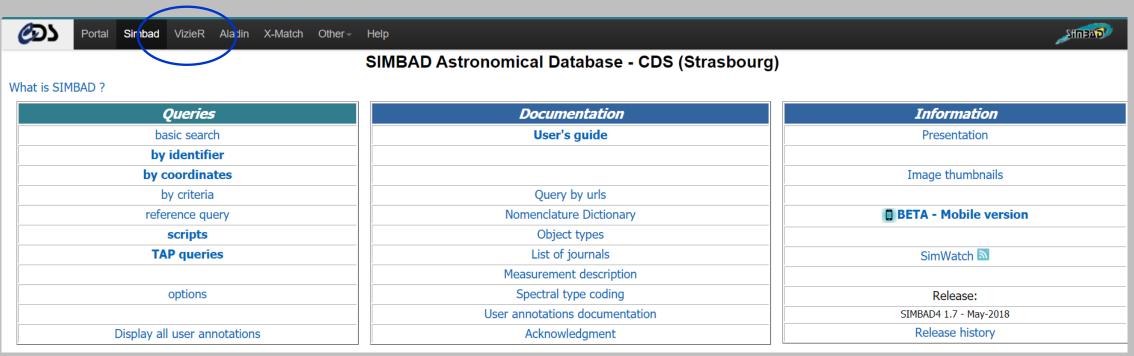

RICERCA PER COORDINATE (BY COORDINATES QUERY)

INFORMAZIONI DI BASE

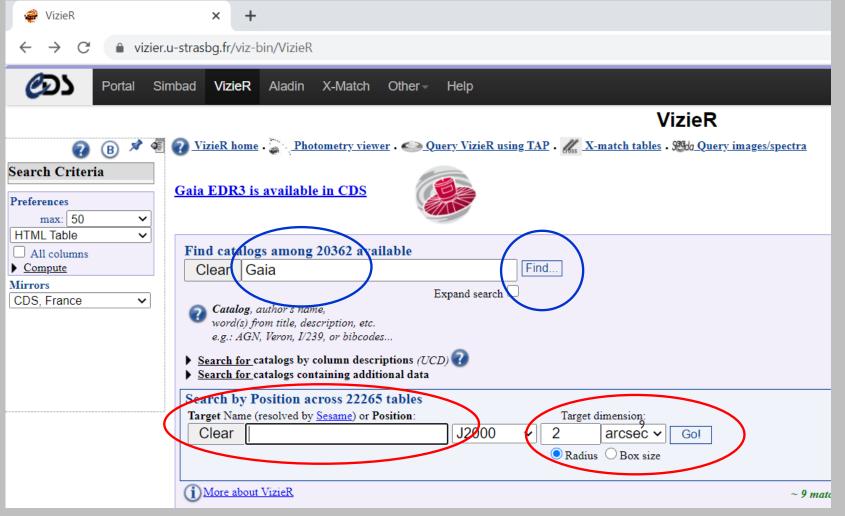
IDENTIFIERS E REFERENCES

Tollow new references on this object

Identifiers e References di Alfa Leo

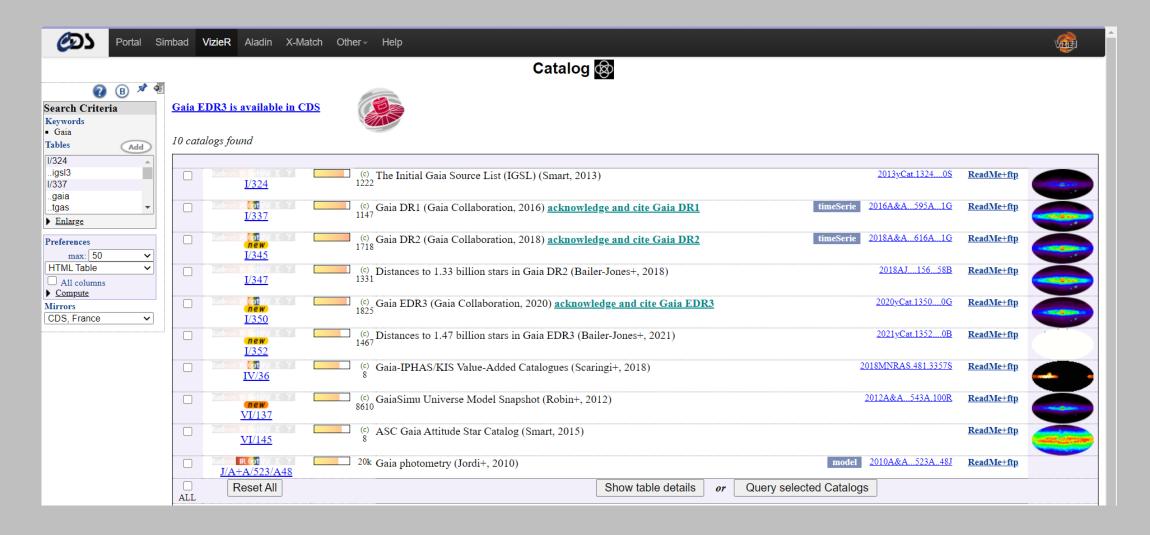

2MASS J10082229+1:

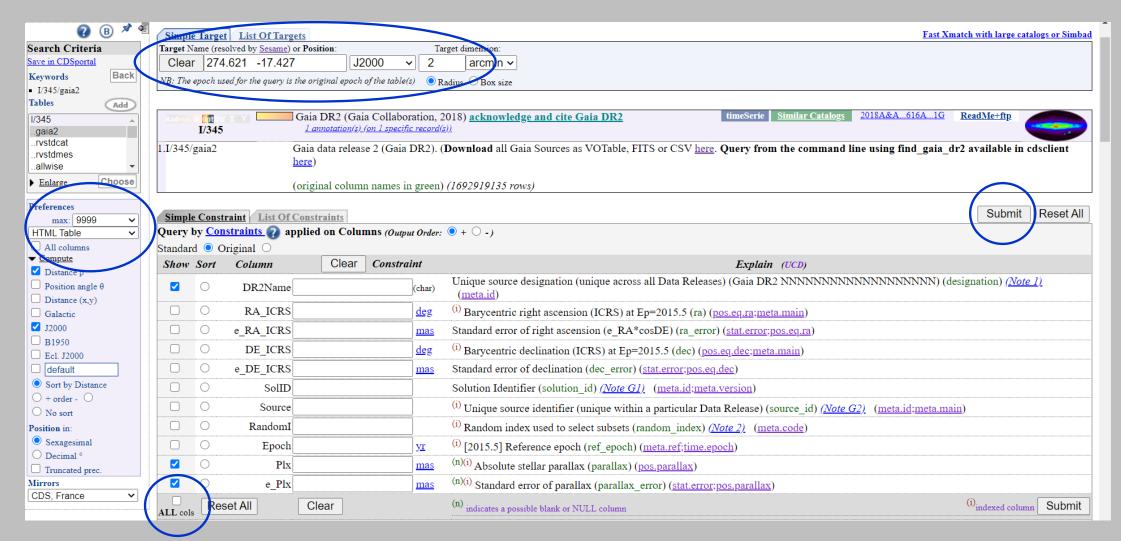
FK5 380 🕮


Reference summaries: from: 1850 to: \$currentYear Display of select by : (not exhaustive, explanation here) In table Title|Abstract|Keyword Score

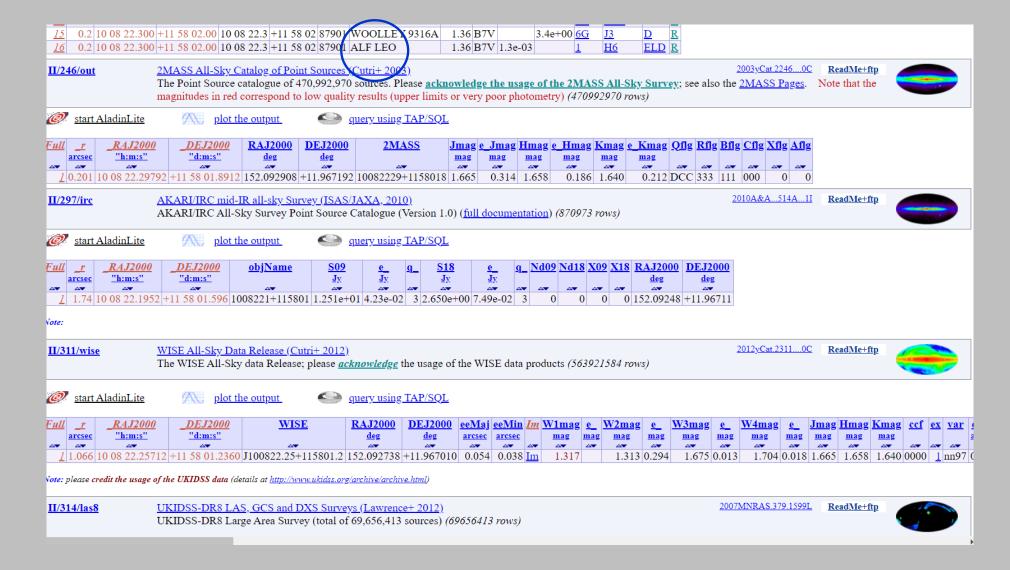
VIZIER

VizieR permette di accedere ad un vasto insieme di cataloghi astronomici: 20709 cataloghi disponibili, al 31 marzo 2021.


RICERCA DI CATALOGHI O OGGETTI TRAMITE VIZIER


E' possibile selezionare:

- un catalogo o una lista di cataloghi
- un oggetto per nome o tramite le coordinate
- Con entrambe le selezione, il database restituisce i dati dell'oggetto disponibili nei cataloghi selezionati


ESEMPIO: RICERCA CATALOGHI GAIA CON VIZIER

ESEMPIO: RICERCA PARAMETRI

ESEMPIO: RICERCA PER NOME OGGETTO CON VIZIER

GAIA

gaia archive

SEARCH VISUALISATION DOCUMENTATION

Welcome to the Gaia Archive at ESA

Gaia is a European space mission providing astrometry, photometry, and spectroscopy of more than 1000 million stars in the Milky Way. Also data for significant samples of extragalactic and Solar system objects is made available. The Gaia Archive contains deduced positions, parallaxes, proper motions, radial velocities, and brightnesses. Complementary information on multiplicity, photometric variability, and astrophysical parameters is provided for a large fraction of sources.

esa

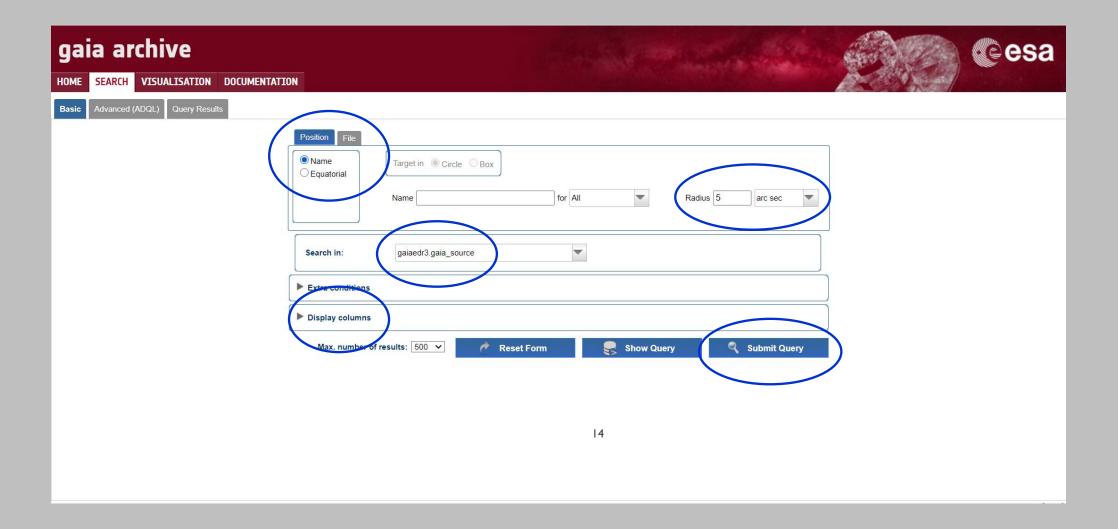
Top Features

How to cite and acknowledge

the basic search form or the ADQL (Astronomical Data Query Language) interface for more advanced queries.

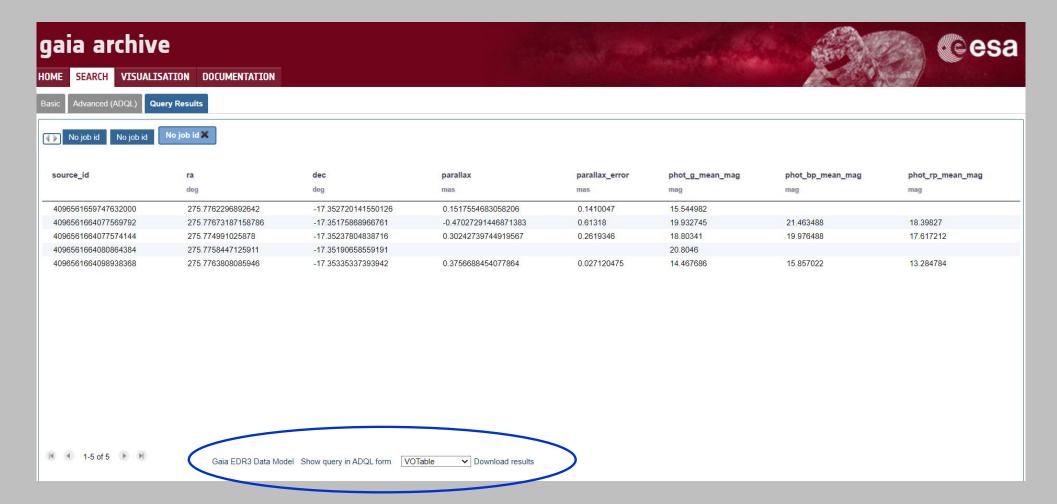
Direct download of Gaia data

tutorials and more. For questions, suggestions or problems, please contact the Gaia Helpdesk.



information resources on the Gaia mission for the scientific community.

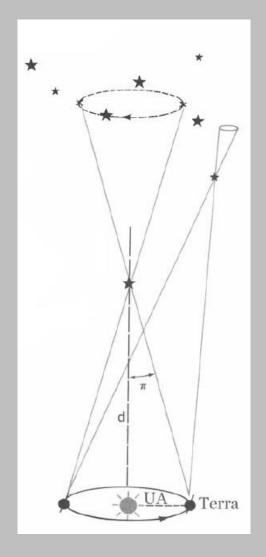
Partner data centres also serving Gaia data.


GAIA - RICERCA DATI

GAIA - ESEMPIO SELEZIONE DEI PARAMETRI

solution_id	designation	✓ source_id	☐random_index	ref_epoch	
☑ra	☐ ra_error	✓ dec	dec_error	✓ parallax	
✓ parallax_error	parallax_over_error	pm	pmra	pmra_error	
pmdec	pmdec_error	a_dec_corr	a_parallax_corr	a_pmra_corr	
☐ ra_pmdec_corr	dec_parallax_corr	dec_pmra_corr	dec_pmdec_corr	parallax_pmra_corr	
parallax_pmdec_corr	pmra_pmdec_corr	astrometric_n_obs_al	astrometric_n_obs_ac	astrometric_n_good_obs_al	
astrometric_n_bad_obs_al	astrometric_gof_al	astrometric_chi2_al	astrometric_excess_noise	astrometric_excess_noise_sig	
astrometric_params_solved	astrometric_primary_flag	nu_eff_used_in_astrometry	pseudocolour	pseudocolour_error	
☐ ra_pseudocolour_corr	dec_pseudocolour_corr	parallax_pseudocolour_corr	pmra_pseudocolour_corr	pmdec_pseudocolour_corr	
astrometric_matched_transits	visibility_periods_used	astrometric_sigma5d_max	matched_transits	new_matched_transits	
matched_transits_removed	ipd_gof_harmonic_amplitude	ipd_gof_harmonic_phase	☐ ipd_frac_multi_peak	ipd_frac_odd_win	
□ruwe	scan_direction_strength_k1	scan_direction_strength_k2	scan_direction_strength_k3	scan_direction_strength_k4	
scan_direction_mean_k1	scan_direction_mean_k2	scan_direction_mean_k3	scan_direction_mean_k4	☐ duplicated_source	
phot_g_n_obs	phot_g_mean_flux	phot_g_mean_flux_error	phot_g_mean_flux_over_error	✓ phot_g_mean_mag	
phot_bp_n_obs	phot_bp_mean_flux	phot_bp_mean_flux_error	$\begin{tabular}{ll} \hline \end{tabular} phot_bp_mean_flux_over_error$	✓ phot_bp_mean_mag	
phot_rp_n_obs	phot_rp_mean_flux	phot_rp_mean_flux_error	\qed phot_rp_mean_flux_over_error	✓ phot_rp_mean_mag	
phot_bp_n_contaminated_transits	$\begin{tabular}{ll} \hline \end{tabular} phot_bp_n_blended_transits$	$\begin{tabular}{ll} \square \ phot_rp_n_contaminated_transits \end{tabular}$	phot_rp_n_blended_transits	phot_proc_mode	
phot_bp_rp_excess_factor	□ bp_rp	□bp_g	□g_rp	dr2_radial_velocity	
☐ dr2_radial_velocity_error	dr2_rv_nb_transits	☐ dr2_rv_template_teff	☐ dr2_rv_template_logg	dr2_rv_template_fe_h	
Οι	□b	☐ ecl_lon	□ ecl_lat		
☐ Select All / None					

ESEMPIO RISULTATO DI RICERCA SU GAIA

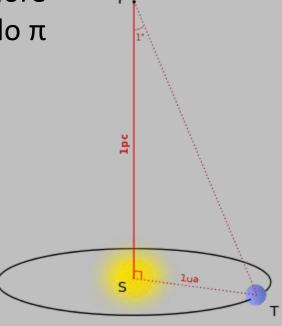


LABORATORIO 1

RELAZIONE PERIODO LUMINOSITÀ PER VARIABILI CEFEIDI

IL METODO DELLA PARALLASSE TRIGONOMETRICA

- Il metodo diretto, principale, per misurare la distanza di un oggetto celeste è la misura della parallasse trigonometrica.
- Si misura lo spostamento angolare di un oggetto rispetto ad un riferimento che si può assumere immobile (perché molto più lontano).
- La validità di questo metodo dipende dalla precisione con cui misuro lo spostamento angolare dell'oggetto.
- Gaia, che è lo strumento più preciso che abbiamo attualmente per misure di posizione, al termine della missione potrà raggiungere una dell'ordine di 10 µarcsec.
- 10 μ arcsec equivale ad avere una precisione del 10% ad una distanza di 10000 parsec (32600 anni luce).



DEFINIZIONE DI PARSEC

1 parsec (pc) è la distanza alla quale il semiasse maggiore dell'orbita della Terra intorno al Sole appare con un angolo π = 1 secondo d'arco.

1 pc = 3.26 anni luce

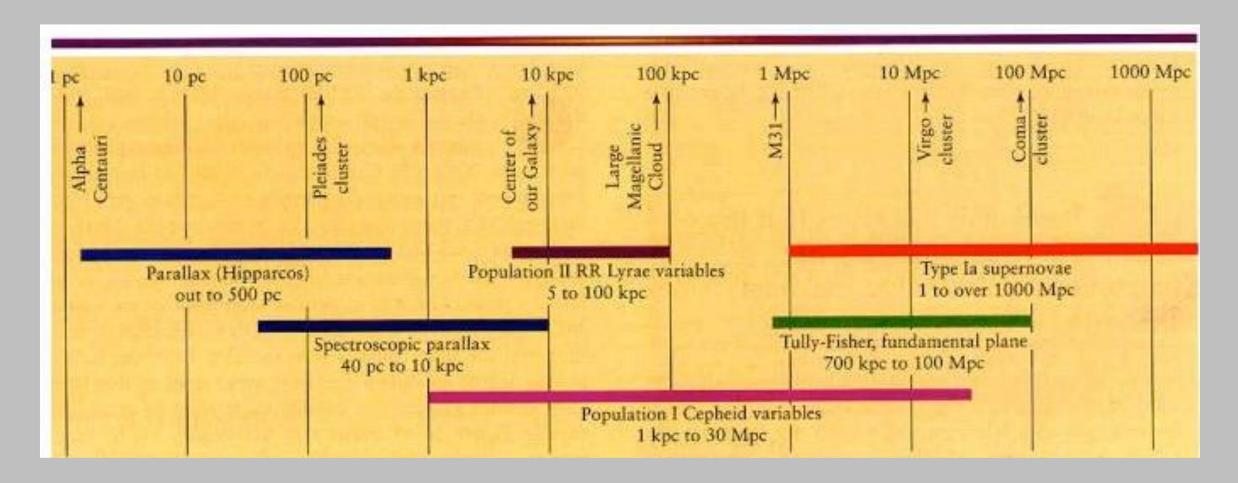
 $\pi \cong \frac{1}{d}$ (π in secondi d'arco, d in parsec)

METODI INDIRETTI

- Quando non è possibile misurare direttamente la distanza di un oggetto, tramite la parallasse trigonometrica, occorre ricorrere a metodi indiretti.
- I metodi indiretti si basano sulla relazione che lega la <u>magnitudine apparente m</u>, <u>la magnitudine assoluta M e la distanza d</u>.

$$M_V = m_V + 5 - 5 \cdot \log_{10} d - A_V$$
 se d in parsec
 $M_V = m_V + 5 + 5 \cdot \log_{10} \pi - A_V$ se d in arcsec

 A_{V} = coefficiente di estinzione interstellare


 Se sono in grado di determinare la magnitudine assoluta M di un astro, misurata la sua magnitudine apparente m, posso determinarne sempre la distanza con l'equazione:

$$d = 10^{[-(M-m-5)/5]}$$
 (d in parsec)

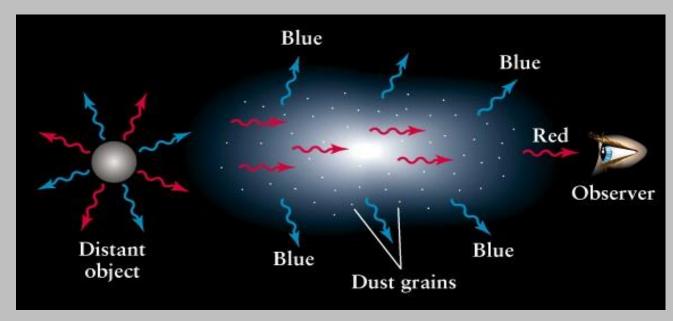
METODI INDIRETTI - CANDELE STANDARD

- Parallasse spettroscopica: determina la magnitudine assoluta tipica sulla base del tipo spettrale e della classe di luminosità.
- Metodo del Wilson-Bappu: la larghezza delle righe di emissione H e K del Call è correlata alla magnitudine assoluta.
- Stelle variabili RR Lyrae: stelle pulsanti che per periodi minori di 1 giorno, hanno magnitudine assoluta costante $M_V = 0.6$.
- Stelle variabili Cefeidi: di Tipo I e di Tipo II: stelle pulsanti che hanno periodo correlato linearmente alla magnitudine assoluta.
- Supernovae di Tipo la: la magnitudine assoluta al massimo è costante, $M_V = -19.3 \pm 0.03$.
- Altre candele standard: giganti rosse brillanti, regioni HII, nebulose planetarie, ammassi globulari.
- **Metodo di Tully-Fisher**: mette in relazione la velocità di rotazione della galassia con la luminosità assoluta delle galassie a spirale.
- **Metodo di Faber-Jackson**: mette in relazione la dispersione di velocità delle stelle con la luminosità assoluta delle galassie ellittiche.
- Legge di Hubble-Lemaitre: esiste una dipendenza lineare tra velocità radiale osservata e distanza della galassia.

SCALA DELLE DISTANZE

MAGNITUDINE APPARENTE

- La magnitudine apparente m misura l'intensità luminosa di una astro misurata dall'osservatore.
- Quando si esprime una magnitudine si specifica anche in che filtro o banda dello spettro elettromagnetico è misurata:
 - Filtri U, B, V, R, I del sistema standard Johnson-Cousins.
 - Filtri J, H, K (infrarosso)
 - Filtri g, r, i, z del sistema Gunn
 - Filtri Gaia: G, Bp, Rp
- I valori più piccoli indicano le luminosità maggiori.


Astro	V
Sirio	-1.5
Polare	+2
Stelle più deboli ad occhio nudo	+6
HST	+31.5

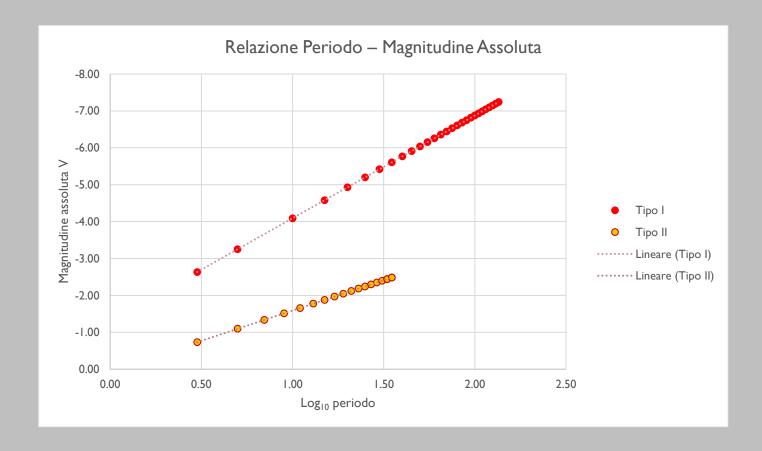
MAGNITUDINE ASSOLUTA

- La magnitudine apparente dipende dalla distanza d dell'astro e della sua luminosità intrinseca L (l'energia per unità di tempo emessa dalla stella).
- Per poter confrontare le intensità luminose intrinseche si definisce come **Magnitudine** assoluta **M**, la magnitudine apparente che l'astro avrebbe se si trovasse alla distanza di 10 pc ($\pi = 0.1$ ").

Astro	m_v	M _v
Oggetti più luminosi		-12.7
Rigel	+0.1	-8.0
Polare	+2	-3.6
Sirio	-1.5	+1.4
Sole	-26.8	+4.75

COEFFICIENTE DI ESTINZIONE INTERSTELLARE

$$A_{\lambda} = f(\lambda^{-1})$$


$$m_{intrinseca} = m_{osservata} - A_{\lambda}^* (d/1000)$$

se A_{λ} = coefficiente di estinzione interstellare è misurato in mag·kpc⁻¹ o in mag

d = distanza in parsec

LA RELAZIONE PERIODO-LUMINOSITÀ DELLE CEFEIDI

Nelle Cefeidi esiste una correlazione tra periodo e magnitudine assoluta media:

RELAZIONE P-L NEL FILTRO G DI GAIA - RICERCA PERIODO E MAGNITUDINE

Occorre predisporre una lista di Cefeidi con periodo, magnitudine apparente media e distanza noti.

1. Ricerca dei dati di periodo e magnitudine

- Con <u>VizieR https://vizier.u-strasbg.fr/viz-bin/VizieR</u>, ricercare il catalogo di variabili Cefeidi individuate dalla missione Gaia
 - Find catalogs: 'Gaia' -> Find
 - Selezionare <u>I/345</u> Gaia DR2 (Gaia Collaboration, 2018)
 - Selezionare <u>I/345/cepheid</u> Cepheid stars
- Reset di tutti i parametri: doppio click nella casella 'All cols'
- Selezione parametri:
 - Tbest: tipo di cefeide ('DCEP' = Tipo I, 'T2CEP = Tipo II, 'ACEP' = Cefeidi Anomale')
 - Source: identificativo Gaia della Cefeide
 - Pf e Pf : periodo della Cefeide, con l'errore sul periodo
 - G_mag e_Gmag : magnitudine media della Cefeide nel filtro G, con l'errore sulla magnitudine Nota: le coordinate della Cefeide sono inserite automaticamente → (continua)

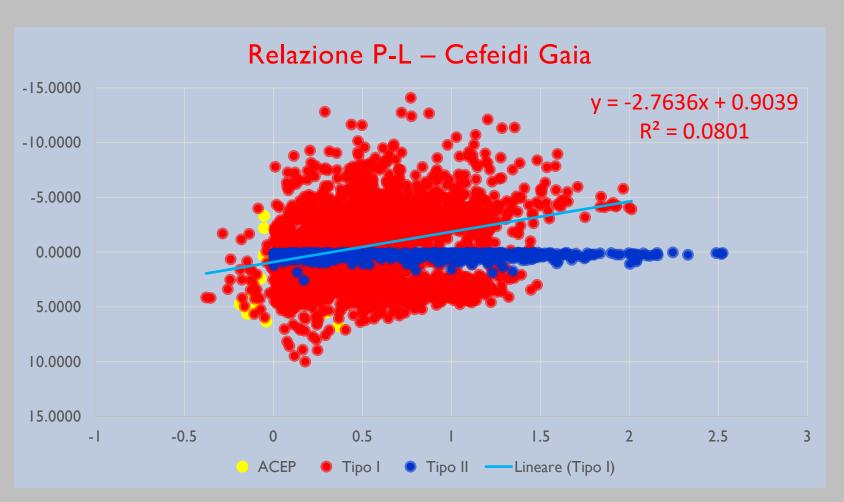
RELAZIONE P-L NEL FILTRO G DI GAIA - RICERCA DISTANZA

- Preferenze. Max = 'Unlimited' Formato dell'output: 'Tab-Separated-Values'
- Selezionare come 'Target dimension': 0.1 arcsec
- Salvare il file di output in formato txt e trasformarlo in un file excel in cui eseguire i calcoli.
- Eliminare le Cefeidi di cui non viene riportato il periodo o la magnitudine.
- Ordinare le variabili per tipo ('DCEP', 'T2CEP, 'ACEP')

2. Ricerca dei dati di distanza

- Creare un file di testo con gli identificativi delle Cefeidi, da utilizzare come 'List of targets'
- Selezionare <u>I/345</u> Gaia DR2 (Gaia Collaboration, 2018)
- Selezionare i parametri 'DR2 Name', 'Plx', 'e_Plx' (parallasse ed errore della parallasse)
- Selezionare come 'Target dimension': 0.1 arcsec
- Output: Single Table
- Preferenze. Max = 'Unlimited' Formato dell'output: 'Tab-Separated-Values'
- Salvare i dati di parallasse π ed errore della parallasse $\Delta\pi$ e inserirli nel file excel di calcolo.

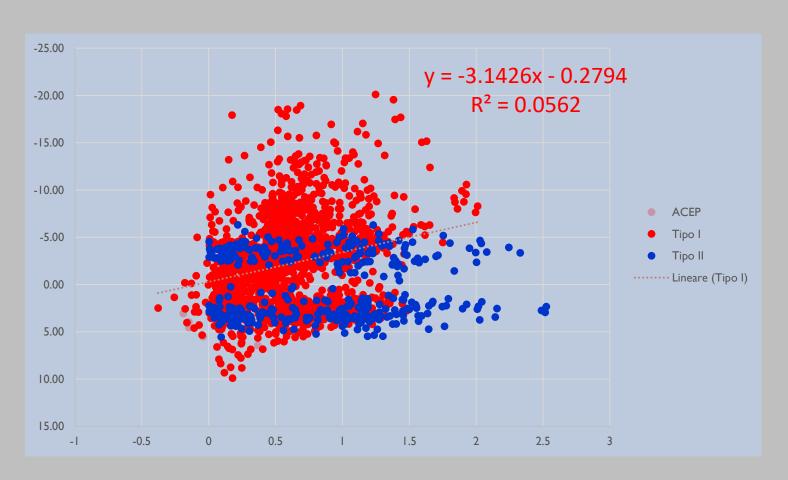
RELAZIONE P-L NEL FILTRO G DI GAIA - CALCOLO


3. Calcolo

- Eliminare le Cefeidi con parallasse negativa (che per definizione non possono esistere) o per cui la parallasse non è riportata.
- Calcolare per ogni Cefeide la magnitudine assoluta nel filtro G: $M_G = m_G + 5 + 5 \cdot \log_{10} \pi$
- Calcolare l'errore di ΔM_G applicando la propagazione degli errori:

$$\Delta M = \sqrt{\left(\frac{\partial M}{\partial m}\right)^2 \cdot \Delta m^2 + \left(\frac{\partial M}{\partial \pi}\right)^2 \cdot \Delta \pi^2} = \sqrt{\Delta m^2 + \left(5 \cdot \frac{\log_{10} e}{\pi}\right)^2 \cdot \Delta \pi^2} \simeq \sqrt{\Delta m^2 + 4.7153 \cdot \frac{\Delta \pi^2}{\pi^2}}$$

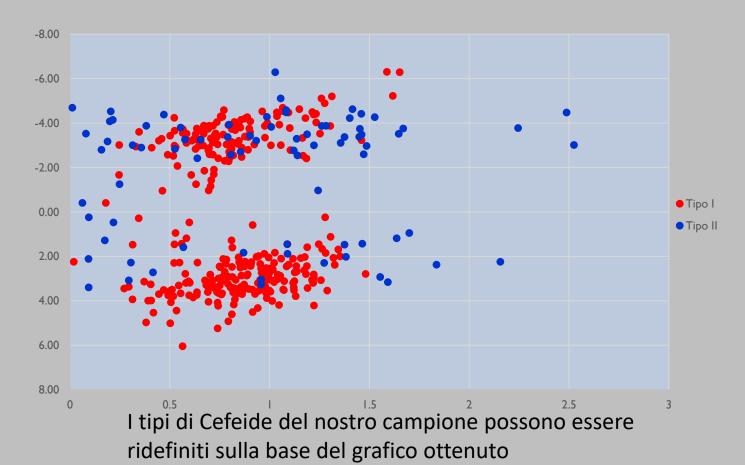
- Calcolare per ogni Cefeide Log₁₀ del Periodo
- Costruire il grafico Log ₁₀(P) M_G per le tre tipologie di Cefeidi.
- Ricavare i coefficienti dell'equazione lineare $M = A + B \cdot \log_{10}(P)$ applicando i minimi quadrati.


RELAZIONE P-L NEL FILTRO G DI GAIA - RISULTATO PRELIMINARE

Osservazioni:

- Correlazione lineare pessima, con una dispersione alta dovuta all'errore sulla parallasse.
- Limite in termini di magnitudine assoluta, che è stato posto nella definizione di Cefeide di Tipo II in questo catalogo.

RELAZIONE P-L NEL FILTRO G DI GAIA - ESTINZIONE E PRIMA SELEZIONE


Campione di Cefeidi ridotto, escludendo gli oggetti per cui l'errore sulla parallasse è maggiore della misura della parallasse stessa

Assume un'estinzione $A_G = 0.3 \text{ mag} / \text{kpc}$ per ogni Cefeide

Osservazioni:

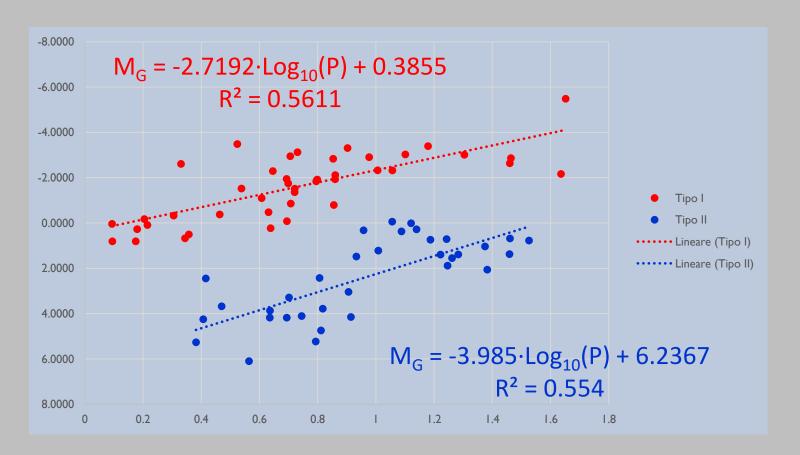
- La dispersione è sempre molto alta
- Nel tipo II, iniziano a delinearsi due gruppi ben precisi con livelli di magnitudine assoluta diversi

RELAZIONE P-L NEL FILTRO G DI GAIA - GRAFICO FINALE

Campione di Cefeidi ulteriormente ridotto, selezionando solo gli oggetti per cui l'errore sulla parallasse è minore di 0.1 della misura della parallasse stessa

Assume un'estinzione $A_G = 0.3 \text{ mag} / \text{kpc}$ per ogni Cefeide

Osservazioni:


- La dispersione nei due gruppi diminuisce
- E' ragionevole a questo punto pensare che la classificazione originale del database sia da rivedere.

RELAZIONE P-L NEL FILTRO G DI GAIA - RISULTATO FINALE

Osservazioni:

Si possono eliminare le Cefeidi 'anomale:

- Tipo 1 hanno tipicamente un periodo massimo di 135 d (Log₁₀(P) < 2.13)
- Tipo 2 hanno tipicamente un periodo massimo di 35 d (LOG₁₀(P) < 1.54)
- Si possono per un sottoinsieme del campione di Cefeidi considerare i valori misurati da Gaia per il coefficiente di estinzione (parametro 'AG' in <u>I/345/gaia2</u>

LABORATORIO 2 CALCOLO DELLA DISTANZA DI UNA GALASSIA

RELAZIONI PERIODO-LUMINOSITÀ PER LE CEFEIDI NEL VISIBILE

- Nel visibile valgono le relazioni:
 - Cefeidi di Tipo I:

$$M_V = (-1.304 \pm 0.065) - (2.786 \pm 0.075) \cdot \log_{10} P^{[1]}$$

Cefeidi di Tipo II:

$$M_V = (0.05 \pm 0.05) - (1.64 \pm 0.05) \cdot \log_{10} P^{[1]}$$

[1] relazione periodo-luminosità tratta da S. Gossan, C. Ott, Methods of Measuring Astronomical Distances, LIGO Scientific Collaboration, 2012.

- Per calcolare la distanza di una galassia, occorre avere i dati di magnitudine apparente (in questo caso nel visibile) e del periodo di cefeidi appartenenti alla galassia.
- Dal periodo si ricava la magnitudine assoluta nel visibile per ogni singola Cefeide.
- Dalla magnitudine apparente e assoluta si ricava la distanza di ogni singola Cefeide.
- La distanza della galassia si può stimare come media delle singole misure.

ESEMPI DI CATALOGHI DI CEFEIDI IN ALTRE GALASSIE

https://vizier.inasan.ru/viz-bin/VizieR

- Find catalog: 'Cepheid'
 - J/ApJ/777/79 HST photometry of Cepheid candidates in M101 (Mager+, 2013)
 - J/ApJ/733/124/cepheids Cepheids in M101 observed with HST (Shappee+, 2011)
 - J/A+AS/126/401 New M31 Cepheid Candidate Identifications
 - <u>J/ApJ/508/491</u> M101 Cepheids (Stetson+, 1998)
 - J/AJ/156/130 Cepheids in M31 PAndromeda Cepheid sample (Kodric+, 2018)
- Selezionare cataloghi che contengano almeno il periodo e la magnitudine nella banda V di un campione di Cefeidi.

CEFEIDI NELLA GALASSIA M101

- Dal catalogo <u>J/ApJ/777/79</u> ricavo magnitudine apparente media nel visibile e il periodo di 619 candidate Cefeidi nella galassia M101 (Tipo non definito).
- Calcolo la magnitudine assoluta per entrambi i tipi, utilizzando le relazioni P-L nel visibile.
- Calcolo la distanza per ogni cefeide, supponendo entrambi i tipi: d = 10^[-(M-m-5)/5] (d in parsec)
- Calcolo la distanza della galassia M101 come valore medio delle singole misure.

ID	Vmag	Per	Tipo I	Tipo II	M _v (Tipo I)	Distanza (Tipo I)	M _v (Tipo II)	Distanza (Tipo II)	Media	Dev.St.	
	mag	d	Α	Α		Мрс		Мрс	Мрс	Мрс	
ch I _ I _ s000 I	24.341	18.75	-1.304	0.050	-4.874	6.965	-2.061	1.907	7.4	1.3	Tipo I
ch I _ I _ s0002	24.25	21.83	Tipo I	Tipo II	-5.058	7.270	-2.169	1.922	2.3	0.3	Tipo II
ch I_I_s0003	24.141	17.54	В	В	-4.793	6.120	-2.013	1.702			
ch I _ I _ s0004	24.407	23.93	2.79	1.64	-5.169	8.225	-2.234	2.130			
ch I _ I _ s0006	24.954	17.3	AV		-4.776	8.832	-2.003	2.463			
ch I _ I _ s0007	25.033	12.91	0.02		-4.422	7.781	-1.795	2.321			
ch I _ I _ s0008	24.554	13.55			-4.481	6.411	-1.829	1.891			
ch I _ I _ s0009	24.571	14.83			-4.590	6.795	-1.894	1.963			
ch1_1_s0012	24.987	11.4			-4.272	7.107	-1.706	2.181			
ch1_1_s0013	24.981	18.75			-4.874	9.352	-2.061	2.561			
ch1_1_s0014	25.073	15.63			-4.653	8.816	-1.931	2.517			

$$d = 7.4 \pm 1.3 \text{ Mpc (Tipo I)}$$

$$d = 2.3 \pm 0.3 \text{ Mpc}$$
 (Tipo II)

Valore medio calcolato sulla base dei risultati disponibili in letteratura scientifica per M101:

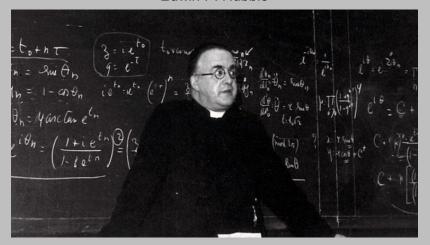
$$= 7.5 \pm 1.6 \, \mathrm{Mpc}$$

LABORATORIO 3 CALCOLO DELL'ETÀ DELL'UNIVERSO

LA COSTANTE DI HUBBLE-LEMAÎTRE

Storicamente, si fa risalire allo studio dell'astronomo statunitense E. Hubble (1929) la scoperta che le galassie si allontanano con una velocità proporzionale alla loro distanza dal Sole.

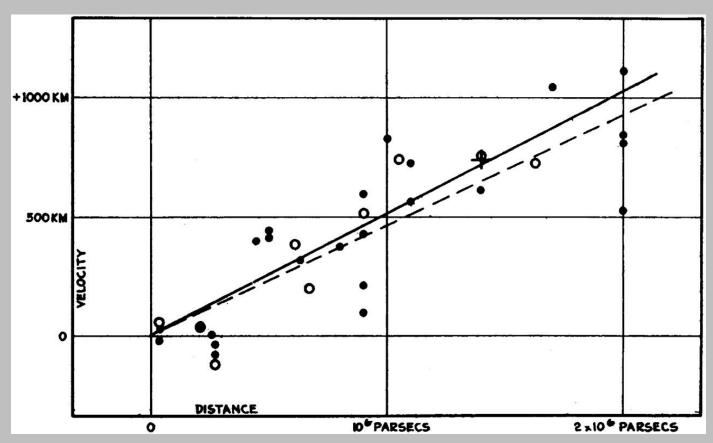
$$v = H_0 \cdot d$$
 (legge di Hubble-Lemaître)


- v = velocità della galassia in km/s
- d = distanza della galassia in Megaparsec (Mpc)

1 Mpc =
$$3.26 \cdot 10^6$$
 anni luce

- 1 anno luce = $9.461 \cdot 10^{12}$ km
- H_0 = costante di (proporzionalità) Hubble-Lemaître

Edwin P. Hubble



Georges E. Lemaître

PRECEDENTI LAVORI E IL CONTRIBUTO DI LEMAÎTRE

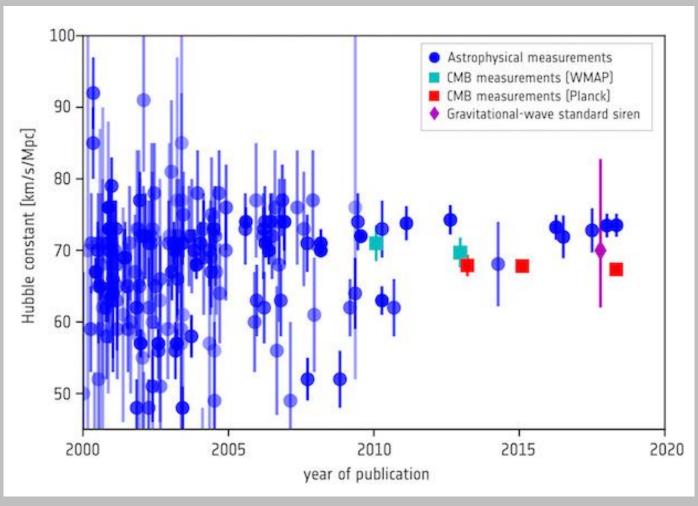
- 1922 Dalla velocità radiale di 29 galassie a spirale, Wirz conclude che: o le galassie più vicine o quelle più massicce hanno redshift, quindi velocità radiali, minori.
- **1924** Utilizzando osservazioni di 42 galassie, Wirz conclude che le velocità radiali crescono in maniera significativa con la distanza.
- 1925 Lundmark nota che i redshift delle galassie a spirale più piccole (presumibilmente più distanti) sono più grandi di quelli delle galassie più vicine
- **1927 Lemaître**, partendo da una soluzione delle equazioni di Einstein corrispondente ad un universo in espansione, **deduce per la prima volta che la velocità delle galassie è direttamente proporzionale alla loro distanza**. Utilizzando le velocità di 42 galassie, misurate da Slipher, e le loro luminosità, derivate nel 1926 da Hubble, determina due valori: 575 e 670 km·s⁻¹·Mpc⁻¹ e assume un valore medio di **625** km·s⁻¹·Mpc⁻¹.

IL LAVORO DI HUBBLE

Valore originale $H_0 \sim 500 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$

H_0 (km·s ⁻¹ ·Mpc ⁻¹)							
24 galassie	9 gruppi						
465 ± 50	513 ± 60						

Hubble 1929

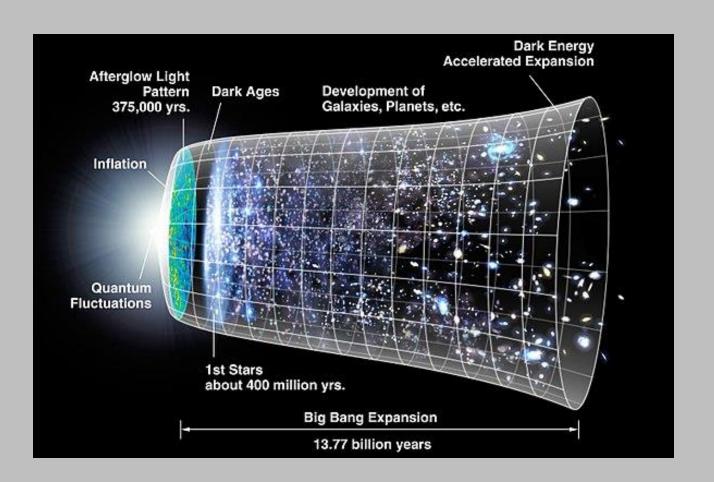

https://www.pnas.org/content/15/3/168

^{&#}x27;A relation between distance and radial velocity among extra-galactic nebulae'

LA COSTANTE DI HUBBLE-LEMAÎTRE OGGI - 1

- Esiste un'incompatibilità tra le stime di H_0 ottenute con metodi astrofisici (relative all'universo più recente) rispetto a quelle derivate da parametri cosmologici (relative all'universo primordiale), ad esempio:
 - $H_0 = 74.03 \pm 1.42 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$ (Cefeidi Nubi di Magellano HST).
 - $H_0 = 70.50 \pm 2.37 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$ (Supernovae Tipo Ia HST).
 - $H_0 = 67.4 \pm 0.5 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$ (telescopio spaziale Planck anisotropie del fondo cosmico a microonde).
- Esiste quindi una discrepanza tra le misure del tasso odierno di espansione dell'universo e il valore atteso sulla base dell'espansione dell'universo primordiale.
- La probabilità che questa discrepanza rientri negli errori di misura è minore di 10⁻⁵.

LA COSTANTE DI HUBBLE-LEMAÎTRE OGGI - 2

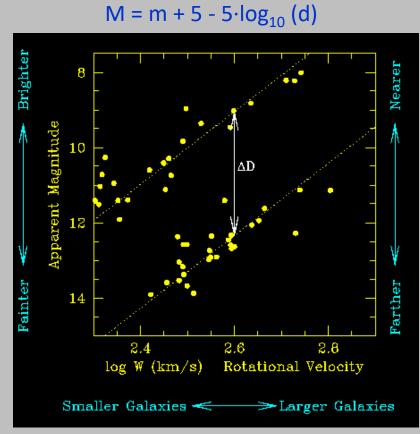

https://sci.esa.int/web/planck/-/60504-measurements-of-the-hubble-constant

L'ETÀ DELL'UNIVERSO

Età dell'Universo ≈ 1 / H₀

(ordine di grandezza valido per tutti i modelli cosmologici che assumono un 'Big Bang')

Una valutazione più precisa richiede la conoscenza di altri parametri cosmologici, ad esempio il tipo di **espansione inflazionaria**.


CALCOLO DELLA COSTANTE HUBBLE-LEMAÎTRE

Per un gruppo di galassie (che non appartengono al Gruppo Locale), occorre misurare:

- la velocità radiale;
- la distanza.

La **velocità radiale** si misura tramite lo spostamento verso il rosso (**redshift**), dovuto ad **effetto Doppler** delle righe spettrali, osservabili sul continuo della galassia.

La **distanza** si può misurare con vari metodi: Cefeidi, Supernovae, Tully-Fisher. Tutti si basano sulla capacità di determinare la magnitudine assoluta.

Metodo di Tully-Fisher

DUE ESEMPI DI COME RICAVARE VELOCITÀ RADIALE E DISTANZA

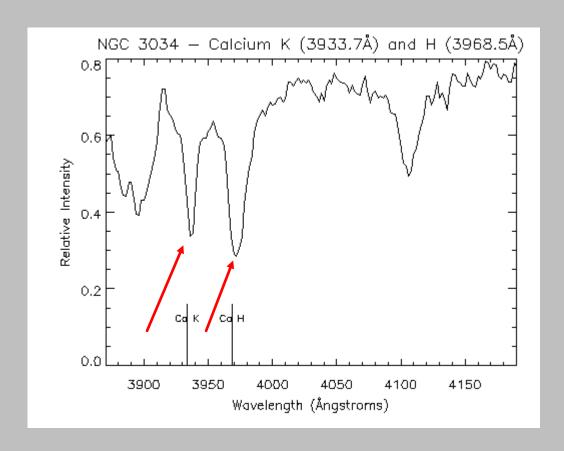
1. Misura delle velocità per effetto Doppler su spettri di galassie

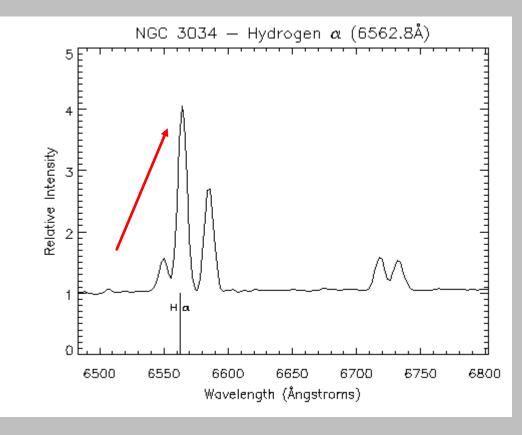
- Misura diretta delle lunghezze d'onda osservate su spettri di galassie e calcolo delle velocità radiali per effetto Doppler
- Ricerca dei valori delle distanze tramite database presenti su SIMBAD

2. Ricerca delle velocità radiali e distanze su database esterni a SIMBAD

Con estensione della ricerca a distanze maggiori (sino a circa 400 Mpc)

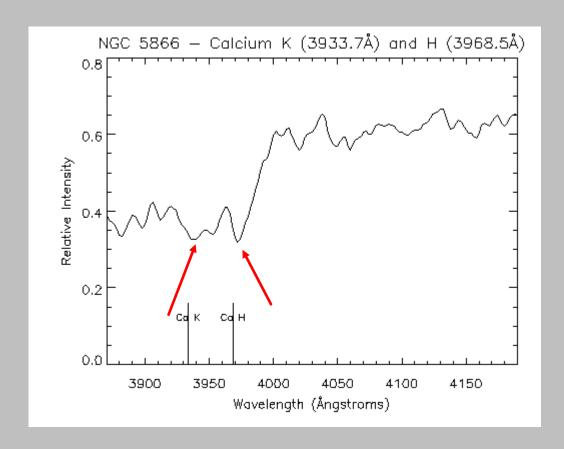
ESEMPIO 1 - EFFETTO DOPPLER

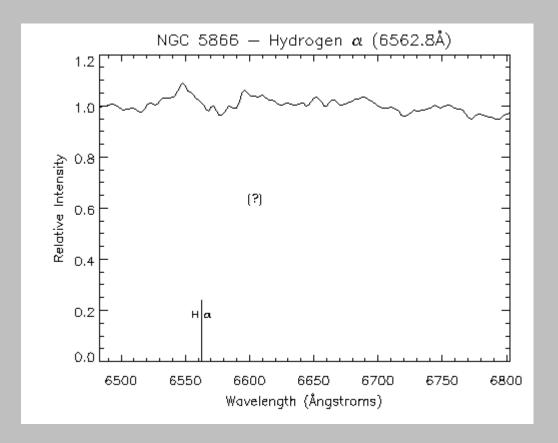

- λ = la lunghezza d'onda, osservata, di una riga spettrale della galassia in movimento con velocità v.
- λ_0 = la lunghezza d'onda della stessa riga spettrale se la velocità relativa fosse nulla (lunghezza d'onda emessa a riposo, misurata in laboratorio).
- c = velocità della luce nel vuoto = $2.99792458 \cdot 10^5 \,\mathrm{km} \cdot \mathrm{s}^{-1}$


$$z \text{ (redshift)} \equiv \frac{\lambda_{osservata} - \lambda_{emessa}}{\lambda_{emessa}} = \frac{\lambda - \lambda_{0}}{\lambda_{0}} = \frac{v}{c}$$
 Equazione non relativistica

Occorre avere a disposizioni degli spettri di galassie su cui misurare la lunghezza d'onda di righe spettrali note.

ESEMPIO 1 - MISURA DI RIGHE SPETTRALI E VELOCITÀ DELLA GALASSIA





$$v = c \cdot \frac{\lambda_{osservata} - \lambda_{emessa}}{\lambda_{emessa}}$$

ESEMPIO 1 - UN ESEMPIO DI MISURA DIFFICILE

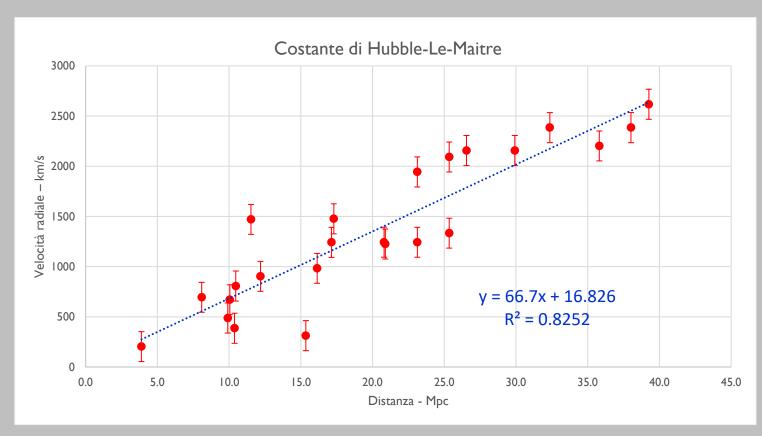
ESEMPIO 1 - LA VELOCITÀ RADIALE FINALE COME MEDIA PESATA

	Misure						Media_pesata_vel	e_Media_velocità
Galassia	Ca II (K)	err_Ca II (K)	Ca II (H)	err_Ca II (H)	H_alfa	err_H_alfa	x *	σ*
NGC 1357	3962	3	3998	3	6607	3	2092	104
NGC 1832	3960	5	3995	5	6605	3	1943	122
NGC 2276					6615	3	2385	137
NGC 2775	3955	3	3988	3	6592	5	1477	132
NGC 2903	3937	5	3972	5	6572	3	387	122
NGC 3034	3936	3	3972	3	6567	3	204	104
NGC 3147	3968	3	4005	10	6620	3	2617	116
NGC 3227	3950	10	3985	3	6590	3	1244	116
NGC 3245	3949	5	3985	3			1225	195
NGC 3368	3945	5	3978	3	6582	5	806	148
NGC 3471					6610	5	2156	228
NGC 3516					6615	5	2385	228
NGC 3623	3940	5	3975	3			488	195
NGC 3627	3942	3	3977	3	6578	3	670	104
NGC 3941	3945	3	3981	3			903	161
NGC 4472	3950	10					1242	762
NGC 4631					6578	3	694	137
NGC 4775					6595	3	1471	137
NGC 5248	3947	3	3980	3	6585	3	983	104
NGC 5866	3945	10	3972	3			313	217
NGC 6181					6610	3	2156	137
NGC 6217					6590	3	1243	137
NGC 6643					6592	3	1334	137
NGC 6764					6611	5	2202	228

- Lunghezze d'onda in Angstrom
- Velocità in km·s⁻¹
- Velocità calcolata come Media pesata delle misure $x_i \pm \sigma_i$:

$$\bar{x}^* = \frac{\sum_1^N w_i x_i}{\sum_1^N w_i}$$

$$w_i = \frac{1}{\sigma_i^2}$$


$$\sigma^* = \sqrt{\frac{1}{\sum_{1}^{N} \frac{1}{\sigma_i^2}}}$$

DISTANZA DELLA GALASSIA

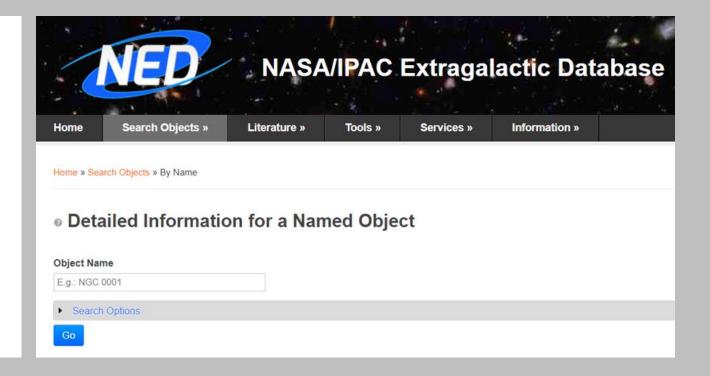
- Si utilizzano database presenti in SIMBAD tramite la funzione VizieR https://vizier.inasan.ru/viz-bin/VizieR:
 - https://vizier.u-strasbg.fr/viz-bin/VizieR?source=J/ApJ/702/955
- Selezionare i parametri: 'Name' e 'Distance'
- List of targets: caricare un file di testo con i nomi delle galassie

Galassia	Distanza (Mpc)
NGC 1357	25.4
NGC 1832	23.1
NGC 2276	32.4
NGC 2775	17.3
NGC 2903	10.4
NGC 3034	3.9
NGC 3147	39.3
NGC 3227	20.8
NGC 3245	20.9
NGC 3368	10.5
NGC 3471	26.6
NGC 3516	38.0
NGC 3623	9.9
NGC 3627	10.1
NGC 3941	12.2
NGC 4472	17.1
NGC 4631	8.1
NGC 4775	11.5
NGC 5248	16.1
NGC 5866	15.4
NGC 6181	29.9
NGC 6217	23.1
NGC 6643	25.4
NGC 6764	35.8

ESEMPIO 1 - CALCOLO DELLA COSTANTE Ho

- H₀ = coefficiente angolare della retta di regressione lineare.
- Assumiamo di avere come errore per H_0 un limite superiore ai valori riportati in precedenza = $3 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$.

$$H_0 = 66.7 \pm 3 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$$


Età dell'universo = $14.7 \pm 0.7 \cdot 10^9$ anni

ESEMPIO 2 - NASA/IPAC EXTRAGALACTIC DATABASE

http://ned.ipac.caltech.edu/

User Interface

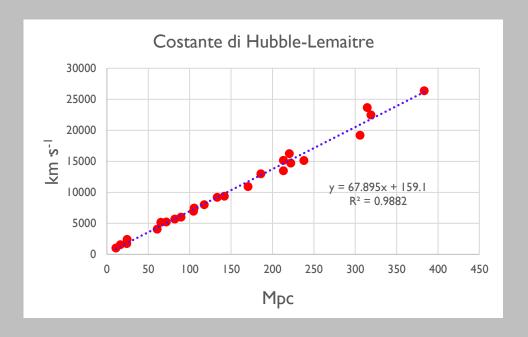
- A new References by Author Name form under Literature on the top menu bar enables author name searches in ADS constrained to articles containing objects in NED.
- By Name object search results now include a tab for each data type, even when some are empty, so tab locations no longer change for different objects.
- Under the Overview tab in By Name search results, a "View in IRSA Finderchart" link is provided to explore available images for the given object using the IRSA Finderchart service.
- SED plots in the Photometry & SED tab are improved by adding upward pointing arrows to represent lower limit values. An example is shown on the right.

ESEMPIO 2 - NASA/IPAC EXTRAGALACTIC DATABASE - DATI DI VELOCITÀ RADIALE

Selected data and derived quantities for MESSIER 100†. More information in the tabs above.										
Cross-identifications Essential note										
MESSIER 100; NGC 4321; UGC 07450; KUG 1220+160; VCC 0596										
Coordinates for Preferred Position										
Equatorial (J2000)					Galactic					
RA, Dec	RA, Dec [Deg]	Unc Semi-major,minor ["]	Unc PA [deg]	Reference	Lon, Lat [deg]					
12h22m54.831s, +15d49m18.54s	185.728463, 15.821818	4.70E-01, 4.70E-01	0	2010ApJS18937E	271.136430, 76.898288					
Preferred Redshift & Derived Qu	Redshift-independent Distances									
z (Helio)	V (Helio) [km/s]	Reference	V (CMB) [km/s]	Hubble Distance (CMB) [Mpc]	# Measurements					
0.00524 +/- 0.00000	1570.912700 +/- 0.899378	1995AJ109.2444R	1896 +/- 23	27.97 +/- 1.99	70					
Classifications										
Object Type	Morphology	Reference	Activity Type	Reference	Other					
G	SAB(s)bc	1991RC3.9.C0000d			SAB(s)bc;LINER HII					
Quick-look Angular & Physical D	iameters			Foreground Galactic Extino	ction (2011ApJ737103S)					
Passband	Diameter ["]	Reference	Diameter [kpc]	A _λ [mag] V	A _λ [mag] K					
POSS1 103a-O	528.00	1964MCG2C0000V	41.53	0.072	0.008					
Quick-look Photometry & Lumin	osities (brightest flux in ea	nch spectral region)								
Spectral region	Band	Apparent mag or flux	Reference	Absolute Mag or vL _v [W]	vL _v [L _⊙ (bol)]					
X-Ray	0.2-4 keV (EINSTEIN)	8.43E-13 ergs sec^-1^ cm^-2^	1992ApJS80531F	2.66E+33 [W]	6.92E+06					
UV	UV_3150 (m_T)	8.57 +/- 0.50 mag	1995A&AS114527R	-22.44 +/- 0.51 [mag]	3.50E+10 +/- 2.05E+10					
Visible	I	8.17 mag	2007ApJS172599S	-2.28E+01 [mag]	4.28E+10					
Near-IR	H_tot (2MASS LGA)	6.817 +/- 0.035 mag	2003AJ125525J	-24.19 +/- 0.12 [mag]	2.86E+10 +/- 1.62E+09					
Far-IR	160 microns (MIPS)	143 Jy	2009ApJ694.1435M	8.65E+36 [W]	2.25E+10					
Radio	57.5 MHz	2.3 +/- 0.6 Jy	1990ApJ35230I	4.16E+30 +/- 1.10E+30 [W]	1.08E+04 +/- 2.87E+03					

ESEMPIO 2 - NASA/IPAC EXTRAGALACTIC DATABASE - DATI DI DISTANZA

- Per ogni galassia, cerchiamo i valori di distanza calcolati da studi diversi.
- Mediamo i valori riportati.
- Deriviamo le distanze, utilizzando i dati del NASA/IPAC Extragalactic Database, come valori medi delle misure riportate nel catalogo NED 1D:


https://ned.ipac.caltech.edu/level5/ NED1D/intro.html

https://ned.ipac.caltech.edu/level5/ NED1D/ned1d.html

M100, NGC 4321	30.76	0.07	14.2	Cepheids	2003A&A411361K	cte LMC K03
M100, NGC 4321	30.77	0.07	14.3	Cepheids	2003A&A411361K	cte U99
M100, NGC 4321	30.78	0.07	14.3	Cepheids	2001ApJ55347F	KP, 42, VI
M100, NGC 4321	30.8	0.07	14.4	Cepheids	2003A&A411361K	cte LMC STS02
M100, NGC 4321	30.8	0.06	14.5	Cepheids	2001ApJ548564W	LMC W01
M100, NGC 4321	30.82	009	14.6	Cepheids	1997ApJ49113K	51, VI
M100, NGC 4321	30.87	.07	14.9	Cepheids	2003A&A411361K	cte MW FSG03
M100, NGC 4321	30.9	0.07	15.1	Cepheids	2003A&A411361K	cte MF91
M100, NGC 4321	30.91	0.07	15.2	Cepteids	2001ApJ55347F	KP +Z, 42, VI
M100, NGC 4321	30.93	0.07	15.3	Cepheids	2003A&A411361K	cte MW GFG98
M100, NGC 4321	30.96	0.07	15.6	Cepheids	2000ApJ530L5G	35, VI (WF)
M100, NGC 4321	30.98	0.08	15.7	Cepheids	2002A&A38919P	MW HIPP
M100, NGC 4321	31.01	0.07	15.9	Cepheids	2003A&A411361K	cte MW STS03
M100, NGC 4321	31.03	0.06	16.1	Cephe ds	1997ApJ48660D	VK(BW)
M100, NGC 4321	31.03	0.06	16.1	Cephei ds	1997ApJ48660D	VI(BW)
M100, NGC 4321	31.04	0.09	16.1	Cephei ds	1996ApJ464568F	42, VI
M100, NGC 4321	31.1	0.15	16.6	Cephei ds	1997ApJ49113K	51, VI +Z
M100, NGC 4321	31.15	0.18	17	Cephei ds	2000ApJ530L5G	6, VI (PC)
M100, NGC 4321	31.18	0.05	17.2	Cephei ds	2006ApJS165108S	
M100, NGC 4321	31.19	0.1	17.3	Cephei ds	2000ApJ529768K	KP+Z
M100, NGC 4321	31.22	0.24	17.5	Cephe ds	2002A&A38919P	MW P02
M100, NGC 4321	31.35	0.06	18.6	Cephe ds	2002A&A38919P	MW GFG
M100, NGC 4321	31.44	0.03	19.4	Cepheids	1997hipp.conf629P	BVRI
M100, NGC 4321	31.49	0.4	19.9	Cephaids	2000ASPC203229M	KP+
M100, NGC 4321	31.6	0.03	20.9	Cepheids	1997hipp.conf629P	BVRI+
M100, NGC 4321	30.78		14.3	Tully-Fisher	LEDA [April 2006]	
M100, NGC 4321	30.91		15.2	Tully Fisher	2003astro.ph.10284R	В
M100, NGC 4321	30.94		15.4	Tull -Fisher	2003astro.ph.10284R	I
M100, NGC 4321	31.43		19.3	HII	2005JKAS387I	
M100, NGC 4321	30.88		15	NII opt	1996ApJ466911E	SN 1979C
M100, NGC 4321	31.09		16.5	SNII opt	2003ApJ591301B	SN 1979C
M100, NGC 4321	31.48		19.8	SNII opt	2003ApJ591301B	SN 1979C
M100, NGC 4321	31.52		20.1	SNII rad	1998ApJ50051W	SN 1979C
M100, NGC 4321	31	0.3	15.8	Novae	1996ApJ468L95F	novae, VI

ESEMPIO 2 - CALCOLO DELLA COSTANTE H₀

	Galassia	Velocità radiale eliocentrica (km/s)	Velocità radiale eliocentrica errore (km/s)	Media dei valori di Distanza (Mpc)	Deviazione standard media dei valori di distanza (Mpc)
1	[HM93] 132819-3257.6	15143	69	238	30
2	[HM93a] 100125-3513.1	14718	45	222	32
3	[M92n] 033422.3-183104	23684	600	315	33
4	[MH93] 014355.4-562057	26382	600	383	54
5	[TB93] 2131.14-6257.7	15162	45	213	23
6	[WM92] 212426.8-614612	22484	600	319	22
7	ESO 291- G 011	12981	55	186	21
8	ESO 300- G 009	5996	600	90	10
9	ESO 352- G 057	5691	45	82	10
10	ESO 508- G 067	7464	45	105	6
11	FCCB 0602	19202	45	306	39
12	LSBG F119-024	13491	600	213	28
13	MCG +03-44-003	9193	29	133	16
14	MCG +11-19-025	10920	20	171	17
15	NGC 0382	5229	20	72	10
16	NGC 0524	2403	5	24	2
17	NGC 0673	5182	5	65	8
18	NGC 0720	1745	7	24	3
19	NGC 2258	4059	36	61	9
20	NGC 4493	6943	28	105	10
21	NGC 6038	9392	23	142	14
22	NGC 4321	1571	1	16	2
23	NGC 4594	1024	5	11	4
24	UGC 01993	8018	11	118	11
25	UGC 11149	16256	13	220	19

 $H_0 = 67.9 \pm 3 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}$

Età dell'universo = $14.4 \pm 0.6 \cdot 10^9$ anni

GRAZIE PER L'ATTENZIONE