Lo studio di meteore e meteoriti con PRISMA

NOIZAL

Hima Kelonia Surveglianza Sistem

re & Atmosfera

Il ritrovamento della meteorite Cavezzo

Dario Barghini

Google Meet, 23/03/2021 h 17-19

Corso di formazione in Astronomia e Astrofisica per docenti di Scuola Secondaria - Anno 2020 / 2021

AMERICAN METEOR SOCIETY - WWW.AMSMETEORS.ORG

COMET

A solid body made of ice, rock, dust and frozen gases. As they fracture and disintegrate, some comets leave a trail of solid debris.

Nucleus (solid part): tens of kilometers, Tail: millions of kilometers.

ASTEROID

Small rocky, iron or icy debris flying in space. From 1 meter to hundreds of kilometers.

> METEOROID A small asteroid. From microns to 1 meter.

METEOR

The light emitted from a meteoroid or an asteroid as it enters the atmosphere.

METEOR SHOWER

An annual event, when the Earth passes through a region having a great concentration of debris, such as particles left by a comet. From Earth, it looks like meteors radiate from the same point in the night sky. FIREBALL A meteor brighter than the planet Venus.

BOLIDE The light emitted by a large meteoroid or an asteroid as it explodes in the atmosphere.

METEORITE

A fragment of a meteoroid or an asteroid that survives passage through the atmosphere and hits the ground. From few grams to several dozen of tonnes.

Concept: Mike Hankey - Design: Vincent Perlerin for AMS - 2015 © AMS -

Asteroid orbital families

Asteroids size distribution

Near-Earth Object (NEO)

Minor bodies of the Solar system with orbital closest approach < 1.3 AU (1 AU ~ 150 million km) ~ 2000

- \sim 150 with D > 1 km
- NEA: Near-Earth Asteroid
- **PHO**: Potentially Hazardous Object (with minimum orbital intersection distance of 0.05 AU and H > 22 / D > 150 m).
- PHA (PH Asteroid)

 ~ 20000

Fireballs Reported by US Government Sensors

(1988-Apr-15 to 2017-Nov-19)

https://cneos.jpl.nasa.gov/fireballs/

Alan B. Chamberlin (JPL/Caltech)

Four «regimes»:

1) Orbital motion:

- perturbation of the orbit of the parent body (gravitational, collisional)
- Intersection of the meteoroid orbit with the Earth \rightarrow Impact velocity (in the Earth's RF) given by the (vectorial) sum of the Earth's speed (V_o~ 30 km/s) and the meteoroid one

... next slide

only Earth's gravity

Four «regimes»:

1) Orbital motion:

Entry velocity between 11 and 72 km/s

- Asteroids (and meteoroids) tipically have a • prograde orbits, so that the vectorial sum is tipically a «difference» of modulus \rightarrow asteroidal component – «low» velocity
- <u>Comets</u> can have retrograde orbits • \rightarrow cometary component – «high» velocity

Four «regimes»:

1) Orbital motion:

Entry velocity between 11 and 72 km/s

- <u>Asteroids</u> (and meteoroids) tipically have a prograde orbits, so that the vectorial sum is tipically a «difference» of modulus
 → asteroidal component «low» velocity
- <u>Comets</u> can have **retrograde orbits** → cometary component – «high» velocity

Four «regimes»:

2) Pre-heating:

- From 300 to 100 km of altitude the body starts to «feel» the Earth's atmosphere
- The surface temperature quickly rise (500-1000 K) but the inside stays approximately unheated (except for meteor dust)
- Heat conductivity (radiation transfer for small bodies)
- Surface tension \rightarrow spallation

Four «regimes»:

3) Ablation:

- The pre-heating starts to melt the body
- At ~ 2500 K, evaporation starts
- Light emission due to ionization of elements + black body radiation
- Energy loss due to ablation competes with **deceleration** (relevant only in low atmosphere)
- Possible phenomena: fragmentation and/or flares

If the meteoroid is slowed down until ~ 10 km/s and reaches the low atmosphere (< 30 km) ...

Four «regimes»:

4) Dark-flight:

- The **light emission ceases** because there is not enough kinetic energy to either evaporate or provide heating
- The body decelerate until it begins to «**free-fall**» to the surface of the Earth
- Sensitive to **wind** intensity and direction
- Impact speed between tens to several hundreds of m/s

Five or six «regimes»:

5) Impact crater

(~ 200 identified on the Earth surface)

...

6) Mass extinction

Meteor/Fireball observations

- Meteor **photography** has been used since 1885 (first meteor photograph in Prague by L. Weinek)
- <u>1940</u>: major breakthrough \rightarrow **rotating shutter** for time marks
- <u>1950</u>: first **multi-station** observation program (Ondřejov Observatory of Czechoslovakia, 30 cameras)
- <u>1960</u>: first **meteorite recovery** from systematic observation survey

Fireball Networks

- <u>1960</u>: start of several **Fireball Networks**. The first one was the Czechoslovakian Fireball Network (now called European Fireball Network).
- ... In the meanwhile \rightarrow Technology progress allowed video observations
- <u>2014</u>: **FRIPON** (Fireball Recovery and InterPlanetary Observation Network)
- <u>2016</u>: **PRISMA** (Prima Rete Italiana per la Sorveglianza Sistematica di Meteore ed Atmosfera)
- <u>Today</u>: ~ 2% of the Earth surface is covered by Fireball Networks

Alternative methods to observe meteors

- Meteor scatter (radio meteors): observe the forward scatter generated by the meteor ionized trail of a radio-frequency signal emitted by a radar source (*e.g.* GRAVES in France)
- Infrasounds: detect the lowfrequency components of shock waves generated by the meteor impact in the atmosphere
- Observe meteors from space

sistema ricevente

These methods don't suffer from bad atmospheric conditions, as opposed to optical observations

PRISMA

Prima Rete Italiana per la Sorveglianza Sistematica di Meteore ed Atmosfera

i.e.

First Italian Network for the Systematic Surveillance of Meteors and Atmosphere

- Started in mid-2016 at the Astrophysical Observatory of Turin
 National Institute of Astrophysics (INAF OATO) with the first camera (ITPI01 Pino Torinese)
- Partnered with the twin-project FRIPON (France)
- Currently **led by INAF** in collaboration with many italian universities, professional/amateur observatories, schools, associations...

Observational strategy

Observe the atmospheric entry of the same event from different stations to reconstruct the 3D trajectory (triangulation)

Optimal grid spacing: ~ 80 km

- trade-off between oversampling and onlysingle-events case
- also an economical matter (both money and time)
- the denser the network the highest the magnitude detectable, but...

PRISMA Station: ALL-SKY camera (FISH-EYE)

What PRISMA is looking at?

discovered one day

before the fall

- Apparent magnitude m < 0 (m = 0 for very dark observational sites, usually -1 is the limiting magnitude)
- Diameter greater than 1 cm, mass greater than few grams
- World-wide, 1-meter meteoroid impacts occur 50 times per years (1 each 10 years over France, even less over Italy). Last «big» recorded events: 2008 TC3 meteoroid
 - <u>Almahata Sitta</u> (Sudan, 07/10/2008, 3 m) •
 - <u>Chelyabinsk</u> (Russia, 15/02/2013, 17 m)
- Realistically speaking, PRISMA looks between 1 cm and 1 m

Astrometry & Photometry

<u>Problem</u>: Almost no stars arise from background on 1/30 s meteor frames

- **Captures**: 5 s exposure images each 10 minutes
- About 140 captures / day, with 100-300 stars / captures

Astrometry (positional calibration)

• Automatic identification of stars and catalogue association

IT20200101 New Year bolide (Cavezzo)

IT20200101 New Year bolide (Cavezzo)

- Captured by 8 PRISMA cameras
 @ 18:26:52.9 58.5 (5.6 s)
- Good geographical distribution of cameras
- 75-200 km distance

Station name	Lat. N [°]	Long. E [°]	El. [m]
Bedonia (ITER04) Rovigo (ITVE02) Felizzano (ITPI03) Loiano (ITER01) Cecima (ITLO03) Navacchio (ITTO02) Padoya (ITVE01)	44°30′27″7 45°04′54″0 44°54′45″0 44°15′23″7 44°48′52″7 43°40′59″5 45°24′07″0	09°37′57″.0 11°47′42″.2 08°26′14″.0 11°19′54″.4 09°04′43″.6 10°29′29″.9 11°52′06″.7	550 15 114 787 670 15 64
Asiago (ITVE03)	45°50′57″.9	11°34′06″0	1370

IT20200101 Atmospheric trajectory

• The 3D atmospheric trajectory is reconstructed with the **triangulation method**

IT20200101 Atmospheric trajectory

IT20200101 Atmospheric dynamics

From the triangulation results, we compute the **dynamic of the bolide** (velocity, acceleration, mass loss, effective section etc...)

Cavezzo:

- low entry velocity (12.8 km/s)
- high inclination (68°)

 \rightarrow Residual mass $\neq 0$!

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\Gamma\rho_a v^2}{D_\infty} \exp\left(-\frac{\sigma}{6} \left(v^2 - v_\infty^2\right)\right)$$
$$\frac{\mathrm{d}\rho_a}{\mathrm{d}t} = \frac{\rho_a v \cos z}{H}$$
$$\frac{\mathrm{d}h}{\mathrm{d}t} = -v \cos z$$

		Beginning	Terminal	
Time (UT)	t	18:26:52.9	18:26:58.5	
Height (km)	h	75.9 ± 0.2	21.5 ± 0.1	
Latitude (N)	ϕ	$44^{\circ}44'03'' \pm 7''$	$44^{\circ}50'24''\pm7''$	
Longitude (E)	λ	$10^{\circ}43'09'' \pm 7''$	$10^{\circ}57^{'}25^{''}\pm7^{''}$	
Velocity (km s ⁻¹)	υ	12.2 ± 0.2	4.0 ± 0.2	
Mass-section ratio (kg m ⁻²)	D	280 ± 20	210 ± 20	
Mass (kg)	m	3.5 ± 0.8	1.5 ± 0.4	
Diameter (m)	d	0.13 ± 0.01	0.09 ± 0.01	
Luminous path-length (km)	L	59	1	
Duration (s)	Т	5.6		
Trajectory inclination (°)	T_i	68.4 ± 0.3		
Trajectory azimuth (°)	az,	238.1 ± 0.2		
Min. absolute magnitude	М	-9.5 ± 0.5	@ 32.6 km	
Pre-atmospheric velocity (km s ⁻¹)	v_{∞}	12.8 ±	: 0.2	
Ablation coefficient (s ² km ⁻²)	σ	$0.012 \pm$	0.003	
Max. dynamic pressure (MPa)	$P_{\rm max}$	1.0 ± 0.3 @	28.2 km	
Impact Energy (T TNT)	E	0.07 ±	0.02	

IT20200101 Dark Flight

- The dark flight has to be «extrapolated» from the dynamical model by integrating the system of equation <u>downward to the</u> <u>ground level</u>
- Velocity scale $km/s \rightarrow m/s$

must account for winds!

IT20200101 Orbit

- The atmospheric trajectory is backward – extrapolated to obtain the heliocentric orbit (orbital elements)
- One can try to identify a list of parent body candidates from the computed orbital elements

Cavezzo finding timeline

Cavezzo finding timeline

[Prisma_po] Meteorite Posta in arrivo ×	\$	ē	Ŀ
Davide Gaddi cikitito@gmail.com <u>tramite</u> inaf.it a prisma_po ▼	🖙 4 gen 2020, 15:13 🛛 🛣	*	
🛪 inglese 🔹 🔺 italiano 👻 Traduci messaggio	Disattiva per	inglese	e ×
Salve Ritrovato questo frammento in zona Disvetro_Rovereto sul Secchia in provir frammento di meteorite O sbaglio? Per informazioni o indicazioni 34	icia di Modena. Dalle descrizioni si avvicina ad ie.Gaddi Davide	un	
Salve Ritrovato questo frammento in zona Disvetro_Rovereto sul Secchia in provir frammento di meteorite O sbaglio? Per informazioni o indicazioni 34 Prisma_po mailing list	icia di Modena. Dalle descrizioni si avvicina ad ie.Gaddi Davide	un	
Salve Ritrovato questo frammento in zona Disvetro_Rovereto sul Secchia in provir frammento di meteorite O sbaglio? Per informazioni o indicazioni 34 Prisma_po mailing list <u>Prisma_po@inaf.it</u>	icia di Modena. Dalle descrizioni si avvicina ad ie.Gaddi Davide	un	

<u>+</u> $\mathbf{\Delta}$

Cavezzo finding timeline

Cavezzo meteorite recovery

Fusion crust

10 mm

- First Italian meteorite recovered by an observation survey, just after 3 days from the date of fall
- Just few tens of meteorites recovered in the world with this method from 1960 until nowadays

«Pedegree» meteorites

Meteorites originated from meteoroids with <u>observed</u> <u>atmospheric trajectory</u> and <u>reconstructed pre-impact orbit</u>

- Only 36 from 1959
- Only 21 from systematic surveys like PRISMA
- Cavezzo is the smallest ever recovered

Name	Date UT	v_{∞} (km s ⁻¹)	m_{∞} (kg)	m _{fin} (kg)	TKW (kg)	Mª	$E(T)^b$	Fireball Network ^c
Příbram	07/04/1959	20.9	1300	80	5.6	-19	70	CFN
Lost City	04/01/1970	14.1	165	25	17	-12	4	PFN
Innisfree	06/02/1977	14.7	42	4.9	4.58	-12.1	1	MORP
Benešov	07/05/1991	21.3	4100	300 ^d	0.0116	-19.5	200	EFN
Peekskill	09/10/1992	14.7	5000	_	12.4	-16	130	_
Tagish Lake	18/01/2000	15.8	56000	1300	10	-22	1700	_
Morávka	06/05/2000	22.5	1500	100	1.4	-20	90	-
Neuschwanstein	06/04/2002	20.9	300	20	6.22	-17.2	16	EFN
Park Forest	27/03/2003	19.5	11000	_	30	-21.7	500	-
Villalbeto de la Peña	04/01/2004	16.9	600	13	5.2	-18	20	-
Bunburra Rockhole	20/07/2007	13.4	22	1.1	0.339	-9.6	0.5	DFN
Almahata Sitta	07/10/2008	12.4	40000	39	10.7	-19.7	730	_
Buzzard Coulee	21/11/2008	18.0	10000	_	>200	-20	390	_
Maribo	17/01/2009	28.3	2000	<20	0.0258	-20	190	_
Jesenice	09/04/2009	13.8	170	20	3.611	-15	4	SFN
Grimsby	26/09/2009	20.9	30	5	0.215	-14.8	2	SOMN
Košice	28/02/2010	15.0	3500	500	11.3	-18	100	_
Mason Gully	13/04/2010	14.5	40	_	0.0245	-9.4	1	DFN
Križevci	04/02/2011	18.2	50	<5 ^e	0.291	-13.7	2	CMN
Sutter's Mill	22/04/2012	28.6	40000	_	0.943	-19	4000	_
Novato	18/10/2012	13.7	80	_	0.363	-13.8	3	CAMS
Chelyabinsk	15/02/2013	19.0	$1.2 \cdot 10^7$	10000	730	-27.3	5-10 ⁵	_
Annama	18/04/2014	24.2	470	12.5	0.1679	-18.3	30	FFN
Žď ár nad Sázavou	09/12/2014	21.9	150	>1.3 ^f	0.087	-15.3	9	EFN
Porangaba	09/01/2015	_	_	_	0.970	_	_	_
Sariçiçek	02/09/2015	17.3	1700	_	24.78	-16.8	60	_
Creston	23/10/2015	16.0	50	_	0.8523	-12	2	CAMS, SACN
Murrili	27/11/2015	13.7	38	2	1.68	_	0.9	DFN
Ejby	06/02/2016	14.5	120	_	8.982	-14.0	3	_
Stubenberg	06/03/2016	14	600	_	1.473	-15.5	14	EFN
Hradec Králové	17/05/2016	_	_	_	0.134	-11.5	_	EFN
Dishchii'bikoh	02/06/2016	16.6	1000 ^g	_	0.07957	-16	30	CAMS, SACN
Dingle Dell	31/10/2016	15.4	40	1.4	1.150	_	1	DFN
Hamburg	17/01/2018	15.8	140	>1	~1	-16.3	5.5	_
Renchen	10/07/2018	20	50 ^h	_	1.227	-13.4	2	EFN
Cavezzo	01/01/2020	12.8	3.5	1.5	0.0553	-9.5	0.07	PRISMA

One year later... IT20210315 bolide

IT20210315 bolide

IT20210315 bolide Atmospheric trajectory

- Only one PRISMA camera was operative that night (CAPUA @ CIRA Centro Italiano Ricerche Aerospaziali)
- Triangulation with two other videos from
 Caserta (AAA – Associazione Arma Aeronautica) and Tortoreto (IMTN – Italian Meteor and TLE network)

IT20210315 bolide Atmospheric dynamics

- 80 km beginning heigth @ 14.6 km/s
- 61 km luminous path, in 5.3 s at ~84° inclination
- 19.8 km terminal heigth @ 2.8 km/s
- Terminal mass ~1 kg / ~ 8 cm size (assuming 3.5 g/cm³)

IT20210315 bolide Strewn-field

- Strewn-field over the Temennotte locality -Sant'Agapito (Isernia, Molise)
- <u>Strong winds from NW</u>
 ~ 100 km/h @ 10 km

Come comportarsi con una possibile meteorite

Non toccate la meteorite con le mani

Non avvicinate calamite alla meteorite

Non avvolgete la meteorite con plastica /alluminio

Evitate di alitare troppo vicino alla meteorite Fotografate la meteorite prima di raccoglierla e mappate il punto !!!

Raccogliete la meteorite usando un foglio di carta

Avvolgetela in un panno di cotone

Riponetela in un vaso PULITO di vetro

Inseritelo in altro vaso a chiusura ermetica e con "assorbi umidità"

What about meteorites?

- Meteoritic remnants of the original meteoroid prior to the atmospheric ablation
- «cheap» extraterrestrial samples (with respect, *e.g.*, to sample-return space missions)

Meteorite classification

Main dinstinction between:

- Unmelted (or undifferentiated): chondrites
- Melted (or differentiated): achondrites
- Partially melted: **primitive achondrites** and:
- Stony meteorites
- Iron meteorites

Classification scheme

86 % of collected meteorites are chondrites 90% of chondrites are OC This is not the only meteorite classification scheme proposed by the scientific community, it is just the more widely used

THANK YOU FOR YOUR ATTENTION!

References

Bibliography:

Ceplecha et al. (1998), Meteor Phenomena and Bodies, Space Science Reviews Lauretta et al. (2006), Meteorites and the Early Solar System II, Arizona University Press Jennisken (2008), Meteor Showers and their Parent Comets, Cambridge University Press Gradi et al. (2014), Atlas of Meteorites, Cambridge University Press Ryabova et al. (2019), Meteoroids: Sources of Meteors on Earth and Beyond, Cambridge University Press Gardiol et al. (2016), PRISMA, Italian network for meteors and atmospheric studies, IMC Proceedings Barghini et al. (2019), Astrometric calibration for all-sky cameras revisited, Astronomy & Astrophysics Carbognani et al. (2020), A case study of the May 30, 2017, Italian fireball, European Physical Journal Plus Gardiol et al. (2021), Cavezzo, the first Italian meteorite recovered by the PRISMA fireball network. Orbit, trajectory, and strewn-field, Monthly Notices of the Royal Astronomical Society

Sitography:

PRISMA website: http://www.prisma.inaf.it/ FRIPON website: https://fripon.org/ IMTN website:: https://meteore.forumattivo.com/ Associazione Arma Aeronautica – sez. di Caserta: http://www.assarmaeronauticacaserta.altervista.org/ International Meteor Organisation (IMO) websit: https://www.imo.net/ American Meteor Society (AMS) website: https://www.amsmeteors.org/ The Meteroritical Society: https://meteoritical.org/ NASA website: https://www.nasa.gov/ (JPL, CNEOS, MEO...) Wikipedia: http://en.wikipedia.org

