INAF-Osservatorio astrofisico di Torino Technical Report nr. 159

METIS 3-channel Configuration (draft)

Silvano Fineschi

Pino Torinese, 15 luglio 2012

METIS 3-channel Configuration

Silvano Fineschi INAF – Astrophysical Observatory of Turin, Torino, Italy

issue 0 revision 0– draft 1 date of issue 15 July 2012

Page intentionally left blank

KL.

Distribution

METIS

Name	Organisation

Change Log

date	issue	revision	Paragraphs	reason for change
15/07/12	0	0	All	First release

Table of Contents

1	ABSTRACT	. 7
2	REVISED 3-CHANNEL EXPERIMENT SCIENCE OBJECTIVES	. 7
3	INSTRUMENT PARAMETERS	. 8
3.1	EUV Spectrographic Channel	8
4	INSTRUMENT SENSITIVITY ESTIMATE	11
4.1	Expected countrates	.11
-	Countrates of imaging paths	11
•	Countrates of the spectroscopy path	12
5	CONCLUSIONS	13
6	APPLICABLE DOCUMENTS	14
<mark>6.1</mark>	Reference Documents	.14
7	ACRONYMS	14

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 5 of 17

LIST OF FIGURES

METIS

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 6 of 17

LIST OF TABLES

Table 2 Main differences (in red) between the 4- and 3-channel instrument components
Table 3 Optical specifications of the EUV spectroscopy path. 1
Table 4 Efficiencies of the instrument optical components. 1
Table 5 Estimated imaging countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU 1
Table 6 Estimated imaging countrates (count/s/pixel) at Solar minimum at 0.5 AU 12
Table 7 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU 12
Table 8 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum at 0.5 AU 12

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 7 of 17

1 Abstract

This document describes the 3-channel configuration of the METIS experiment. This configuration has been derived from the original 4-channel configuration as a consequence of the descoping of the He-imaging channel decided by ASI during the coordination meeting with Thales-Alenia Space on July the 13th, 2012. In the <u>3-channel configuration</u>, the following instrument components are <u>descoped</u>:

METIS

- 1. Al filter;
- 2. filter wheel mechanism.

In this configuration, the spectrographic channel is maintained with the following <u>modification</u>, with respect to the 4-channel configuration:

- 1. SVLS grating 1800 l/mm \Rightarrow 3600 l/mm:
- 2. eccentric \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter.

In the 3-channel configuration, the UV and EUV throughputs <u>increase</u> by the following factors, with respect to the 4-channel:

- 1. factor of 2.5 increase for the UV-imaging,
- 2. factor of 9.4 increase for the EV spectrography.

2 Revised 3-channel Experiment Science Objectives

The baseline 4-channel Multi-Element Telescope for Imaging and Spectroscopy - METIS – for the Solar Orbiter mission was designed to combine the imaging and spectroscopic capabilities of coronagraphs and spectrometers. With respect to the original METIS 4-channel configuration, the 3-channel configuration loses the HeII Ly- α imaging and the HI Ly- α spectrography, while it maintains the visible-light pB imaging, the HI Ly- α imaging and the HeII Ly- α spectrography. In addition, unlike in the 4-channel METIS, the 3-channel configuration may include also the MgX, 60.9 nm, spectrography.

4-channel	3-channel
linearly polarized K-corona imaging (590-650 nm)	linearly polarized K-corona imaging (590-650 nm)
narrow-band UV imaging HI Lyman α (121.6 nm)	narrow-band UV imaging HI Lyman α (121.6 nm)
narrow-band extreme UV imaging HeII (30.4 nm)	descoped
spectrography HI 121.6 nm (1 st) HeII 30.4 nm (4 th)	spectrography HeII 30.4 nm (2^{nd}) MgX 60.9 nm (1^{st})

Table 1 summarizes the different science performances of the 4- and 3-channel configurations.

Table 1 Science performances of the 4- and 3-channel METIS configurations

3 Instrument Parameters

Table 2 summarizes the main differences (in red) between the 4- and 3-channel instrument components.

Instrument Component		4-channel METIS configuration	3-channel METIS configuration		
M1 coating		UV-capped multilayer @ 30 nm	UV-capped multilayer @ 30 nm		
M2 coating		UV-capped multilayer @ 30 nm	Interference coating Al/MgF ₂ @ 122 nm		
	coating	UV-capped multilayer @ 30 nm	multilayer @ 30 nm (no UV-cap required)		
SVLS	ruling frequency	1800 lines/mm	3600 lines/mm		
grating	wavelengths	30.4 nm @ 4 th	30.4 nm @ 2 nd		
		121.6 nm @ 1 st order;	60.9 nm @ 1^{st} order;		
EUV filter		Al filter	none		
LIV filtor		Interference A1/MgE.	Interference Al/MgF ₂ with clear aperture		
	0 v Inter		for the EUV spectrographic channel		
Filter w	wheel mechanism	yes	no		
UV dete	ctor openable door	yes	yes		

Table 2 Main differences (in red) between the 4- and 3-channel instrument components

3.1 EUV Spectrographic Channel

The EUV spectrographic path of the 3-channel configuration maintains the same FOV (**Errore. L'origine riferimento non è stata trovata.**) and geometry of the 4-channel UV/EUV spectrographic path. The frequency of the SVLS grating is increased from 1800 l/mm to 3600 l/mm, and the HeII 30.4 nm radiation is diffracted at 2^{nd} order instead of at 4^{th} order.

Figure 1 Multi-slits FOV at 0.28 AU for the EUV spectroscopic path. The FOV sector for spectroscopy is about $\pm 40^{\circ}$. The remaining FOV is used for simultaneous imaging of visible-light pB and HI Ly- α . The spectrum is imaged on the portion of the detector that is not used to acquire the coronal image.

The HeII, 30.4 nm, at 2^{nd} and the MgX, 60.9 nm, at 1^{st} order are diffracted through an eccentric ~ \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter (Figure 2).

Figure 2 Interference filter with MgF₂ *substrate and* Al/MgF₂ *coating for the* VL- *and* UV *imaging channels with clear aperture (bottom) for the* EUV *spectrographic channel*

The grating diffracts at 1^{st} order the HI Ly- α , 1216 nm, and the OVI doublet, 103.2/103.7 nm, outside of the focal plane into a light trap. (Figure 3)

Figure 3 The grating diffracts at 1^{st} order the HI Ly- α , 1216 nm, and the OVI doublet, 103.2/103.7 nm, outside of the focal plane into a light trap.

The optical specifications of the EUV spectrographic channel in the METIS 3-channel configuration are summarized in Table 3. In red are marked the differences from the 4-channel configuration (in parentheses).

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 11 of 17

Telescope Mirror	M1 sector illuminated by the coro	±40° (±32°)		
	Entranço arm			
	Entrance arm		250.0 mm	
	Exit arm		500.0 mm	
	Magnification	1	2.2	
		Slit # (FOVs)	3 (1.5°, 1.8°, 2.1°)	
		Width	30 µm m (44 arcsec	
Sportromotor	Multiclit		spatial resolution)	
Spectrometer		Height (FOV)	1.5 mm (± 0.3°)	
		Separation on	0.72 mm	
		the slit plane		
	Incidence angle (α)	·	≈0°	
	Diffraction angle (β)	12.6°		
	2 nd order of 30.4 nm, 1 st order of 6			
	Ruled area	60 mm (// to the		
		grooves) × 23 mm		
	Radius	302.272 mm		
	Control Duling Frequency	2000 ar/man		
	Central Ruling Frequency	3600 gr/mm		
SVLS grating		(1800 gr/mm)		
	Line Spacing Variation Factors	I ₀	3.6	
	(as defined in Zemax)	α	1.27e-4	
	T = lines/micron, y = distance from	β	-7.0e-7	
	grating center (mm)	24	0	
	$1/T = 1/T_0 + \alpha y + \beta y^2 + \gamma y^3$	Ĩ	°	
	Pixel size	15 μm		
	Spatial Plate Scale	10 arcsec/pixel		
Focal Diano	Spectral Resolution (4-pixel resolu	0.018 nm at 30.4 nm		
FUCALPIALLE	$30 \ \mu m$ slit-width $ imes$ 2.2 magnificati	on)	0.037 nm at 60.9 nm	
	Spectral separation between cons	ecutive slits	0.44 nm at 30.4 nm	
		0.88 nm at 60.9 nm		

METIS

Table 3 Optical specifications of the EUV spectroscopy path.

4 Instrument Sensitivity Estimate

The total instrument throughput derived from the component level efficiencies is shown in Table 4.

	4-cha	nnel			
Ortical Common ant	Spectrography	Imaging	Spectro	Imaging	
Optical Component	4 th ord. 30.4 nm	121.6 nm	2 nd ord. 30.4 nm	1 st ord. 60.9 nm	121.6 nm
Mo/Si ML reflectivity (M1)	0.2	0.34	0.2	0.12	0.34
Mo/Si ML reflectivity (M2)	N/A	0.34	N/A	N/A	N/A
Al/MgF ₂ refletivity (M2)	N/A	N/A	N/A	N/A	0.88
Mo/Si ML reflectivity (grating)	0.2	N/A	0.2	0.12	N/A
Grating diffraction efficiency.	0.1	N/A	0.28	0.6	N/A
Filters transmission/reflectivity	0.3	0.2	N/A	N/A	0.2
Detector QE (KBr)	0.3	0.17	0.3	0.2	0.17
Total throughput	3.6e-4	3.9e-3	3.4e-3	1.7e-3	1.0e-2

Table 4 Efficiencies of the instrument optical components

4.1 Expected countrates

In order to verify that the overall performances of the METIS instrument meet the science requirements, the expected countrates (*i.e., counts-of-detected-photon/s/pixel*) have been estimated from typical coronal radiances (*photons/s/cm²/sr*) in the three wavelength bandpasses of METIS. The instrument spatial plate scale is: 10 arcsec/pixel = 2.42 e-9 sr/pixel (cfr. Table 3)

Countrates of imaging paths

The expected imaging countrates (*i.e.*, *counts-of-detected-photon/s/pixel*) are given in Table 5(at 0.28 AU) and Table 6 (at 0.5AU).

St	reame	r	Coronal	Hole	
FOV [°]	R _☉	121.6 nm (3-channel)	121,6 nm (4-channel)	121.6 nm (3-channel)	121,6 nm (4-channel)
1.50	1.58	3.95E+00	1.54E+00	4.31E-01	1.68E-01
1.80	1.89	4.69E+00	1.83E+00	3.33E-01	1.30E-01
2.10	2.21	3.79E+00	1.48E+00	2.15E-01	8.39E-02
2.40	2.52	2.82E+00	1.10E+00	1.36E-01	5.31E-02
2.70	2.84	1.97E+00	7.70E-01	7.62E-02	2.97E-02
3.00	3.16	1.33E+00	5.19E-01	4.28E-02	1.67E-02

Table 5 Estimated imaging countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU

Str	eamer		Corona	al Hole	
FOV [°]	R_{\odot}	121.6 nm	121.6 nm	121.6 nm	121.6 nm
		(3-channel)	(4-channel)	(3-channel)	(4-channel)
1.50	2.82	1.56E-01	6.08E-02	6.08E-03	2.37E-03
1.80	3.38	2.01E-01	7.82E-02	5.79E-03	2.26E-03
2.10	3.94	1.58E-01	6.18E-02	2.59E-03	1.01E-03
2.40	4.51	1.10E-01	4.28E-02	7.23E-04	2.82E-04
2.70	5.07	7.28E-02	2.84E-02	1.53E-04	5.96E-05
3.00	5.64	4.51E-02	1.76E-02	2.90E-05	1.13E-05

Table 6 Estimated imaging countrates (count/s/pixel) at Solar minimum at 0.5 AU

Countrates of the spectroscopy path

The expected imaging countrates (*i.e.*, *counts-of-detected-photon/s/pixel*) are given in Table 7 (at 0.28 AU) and Table 8 (at 0.5AU).

Str	eamer		Corona	al Hole	
Angle	Rsun	30.4 nm	30,4 nm	30.4 nm	30,4 nm
		(3-channel)	(4-channel)	(3-channel)	(4-channel)
150	1.58	1.26E-01	1.33E-02	4.85E-03	5.13E-04
1.80	1.89	1.47E-01	1.56E-02	2.83E-03	3.00E-04
2.10	2.21	1.14E-01	1.21E-02	2.63E-03	2.78E-04

Table 7 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU

Sti	reamer	Corona	l Hole		
Angle	Rsun	30.4 nm	30,4 nm	30.4 nm	30,4 nm
		(3-channel)	(4-channel)	(3-channel)	(4-channel)
1.50	2.82	4.40E-03	4.66E-04	1.48E-04	1.57E-05
1.80	3.38	4.63E-03	4.90E-04	2.93E-04	3.10E-05
2.10	3.94	2.93E-03	3.10E-04	3.43E-04	3.63E-05

Table 8 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum at 0.5 AU

5 Conclusions

In the <u>3-channel configuration</u>, the following instrument components are <u>descoped</u>:

- 1. Al filter;
- 2. filter wheel mechanism.

In this configuration, the spectrographic channel is maintained with the following <u>modification</u>, with respect to the 4-channel configuration:

- 1. SVLS grating 1800 l/mm \Rightarrow 3600 l/mm:
- 2. eccentric \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter.

In the 3-channel configuration, the UV and EUV throughputs <u>increase</u> by the following factors, with respect to the 4-channel:

- 1. factor of 2.5 increase for the UV-imaging,
- 2. factor of 9.4 increase for the EV spectrography.

6 Applicable Documents

6.1 Reference Documents

7 Acronyms

ADC	Analog to Digital Converter
AFT	Abbreviated Functional Test
AIT	Assembly, Integration and Test
AME	Absolute Maximum Error
AOCS	Attitude and Orbit Control System
AOI	
APE	Absolute Pointing Error
APS	Active Pixel Sensor
AU	Astronomical Unit
BB	Breadboard
BBM	Bread-Board Model
CCD	Charge Couple Device
CFRP	Carbon Fiber Reinforced Plastic
CME	Coronal Mass Ejections
CNR	Consiglio Nazionale delle Ricerche
CNRS	Centre National de la Recherche Scientifique
Col	Co-Investigator
CoM	Center of Mass
CoPI	Co-Principal Investigator
COR	Baseline coronagraph proposed for METIS
CPI	Cross Products of Inertia
CTE	Coefficient of Thermal Expansion
DMS	Data Management System
DOF	Degree of freedom
ECSS	European Cooperation for Space Standardization
EDAC	Error Detection And Correction
EDWM	UV detector window mechanism
EEPROM	Electrically Erasable Programmable Random Access Memory
EEO	Extended External Occulter
EEOM	EEO Mechanism
EGSE	Electrical Ground Support Equipment
EM	Electrical Model
EM	Experiment Manager
EO	External occulter
EOM	External occulter Mechanism
EP	Entrance Pupil
EPROM	Erasable Programmable Random Access Memory
EQM	Electrical Qualification Model
ESA	European Space Agency

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 16 of 17

EUI	EUV Imager
EUV	Extreme UltraViolet
EUVC	EUV Channel
FDIR	Fault Detection. Isolation and Recovery
FFF	Front End Electronics
FFM	Filter Exchange Mechanism
FFT	Full Functional Test
FM	Flight Model
FOV	Field Of View
FDA	Focal Plane Assembly
FPGA	Field Programmable Gate Array
FQ	Flight Sporo
	Full Width at Half Maximum
	Full Wildli at Hall Waximum
GSE	Ground Support Equipment
H/VV	Hardware
Her	Aluminum low-pass filter of the coronagraph
HELEX	Heliophysical Explorers
HERSCHEL	Helium Resonance Scattering in the Corona and Heliosphere
HF	Narrow-band multilayer filter of the coronagraph
HGA	High Gain Antenna
HK	Housekeeping
HVPS	High Voltage Power Supply
HWRP	Half Wave Retarder Plate
IAC	Instituto de Astrofísica de Canarias
IAPS	Intensified Active pixel sensor
IAS	Institut d'Astrophysique Spatiale
IASF	Istituto di Astrofisica Spaziale e Fisica cosmica
IDP	Instrument Development Plan
IEO	Inverted External Occulter
IF	Interface
IFE	Instrument Front End
IFSI	Istituto di Fisica dello Spazio Interplanetario
II S	Instrument Line of Sight
INAF	Istituto Nazionale di AstroFisica
INFM	Istituto Nazionale Eisica della Materia
	Internal Occulter
	Internal Occulter Mechanism
IR	Infrared
	Laboratoire d'Astronbysique de Marseille
	Laboratorie d'Astrophysique de Marseille
	Lauring Current Linners
	Line Of Sight
103	Line Of Sign
	Lyoi Siop
LVPS	Low voltage Power Supply
IVIU	Sun-disk rejection mirror of the coronagraph
M1	Primary mirror of the coronagraph
M2	Secondary mirror of the coronagraph
MCP	Micro Channel Plate
METIS	Multi Element Telescope for Imaging and Spectroscopy
MGSE	Mechanical Ground Support Equipment
ML	Multilayer

MOC	Mission Operation Center
Mol	Moment of Inertia
MOM	Pag. 58
MPPU	METIS Processing & Power Unit
MPS	Max-Planck-Institut fuer Sonnensystemforschung
MSSI	Mullard Space Science Laboratory
N/A	Not Applicable
	Not Applicable National Argonautics and Space Administration
NASA	National Aleonaulus and Space Auministration
NRL	Naval Research Laboratory
OAA	Osservatorio Astronomico di Arcetri
OACN	Osservatorio Astronomico di Capodimonte Napoli
OACt	Osservatorio Astronomico di Catania
OAPa	Osservatorio Astronomico di Palermo
OAR	Osservatorio Astronomico di Roma
OATo	Osservatorio Astronomico di Torino
OATs	Osservatorio Astronomico di Trieste
OGSE	Optical Ground Support Equipment
OP	Off Pointing
PA	Product Assurance
PI	Principal Investigator
	Polarization Modulation Package
PoliTo	Politecnico di Torino
	Policiation Option System
	Polarization Optics System
PROM	Programmable Read Only Memory
QE	
RD-n	Reference Document n
ROIC	Read Out Integrated Circuit
ROS	Relay Optics System
RPE	Relative Pointing Error
S/C	Spacecraft
S/W	Software
SCORE	Sounding-rocket Coronagraphic Experiment
SEA	Shield Entrance Aperture
SEP	Solar Energetic Particles
SMM	Structural Mathematical Model
SO	Solar Orbiter
SOHO	Solar and Heliospheric Observatory
SpW	Space Wire
STOM	Structural Thermal Ontical Model
SV/I S	Spherical Varied Line-spaced
	To Bo Confirmed
	To Be Commined
IEC	I nermo Electric Coooler
ILM	lelemetry
ТМ	Telemetry
TSOM	Time Share Observing Mode
TVLS	Toroidal Varied Line-spaced
UFOV	Unobstructed Field Of View

Università di Aquila
Università della Calabria
Università di Firenze
Università di Padova
Università di Padova
Università di Perugia
Università di Pavia
Università di Roma
Unit Optical Reference Frame
Unit Reference Frame
Ultraviolet
UV channel
Ultraviolet Detector
Visible Detector
Visible Imager & Magnetograph
Visible-light
Visible Light Channel
Vacuum ultraviolet

METIS 3-channel Configuration

Silvano Fineschi INAF – Astrophysical Observatory of Turin, Torino, Italy

issue 0 revision 0– draft 1 date of issue 15 July 2012

Page intentionally left blank

KL.

Distribution

METIS

Name	Organisation

Change Log

date	issue	revision	Paragraphs	reason for change
15/07/12	0	0	All	First release

Table of Contents

1	ABSTRACT	. 7
2	REVISED 3-CHANNEL EXPERIMENT SCIENCE OBJECTIVES	. 7
3	INSTRUMENT PARAMETERS	. 8
3.1	EUV Spectrographic Channel	8
4	INSTRUMENT SENSITIVITY ESTIMATE	11
4.1	Expected countrates	.11
-	Countrates of imaging paths	11
•	Countrates of the spectroscopy path	12
5	CONCLUSIONS	13
6	APPLICABLE DOCUMENTS	14
<mark>6.1</mark>	Reference Documents	.14
7	ACRONYMS	14

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 5 of 17

LIST OF FIGURES

METIS

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 6 of 17

LIST OF TABLES

Table 2 Main differences (in red) between the 4- and 3-channel instrument components
Table 3 Optical specifications of the EUV spectroscopy path. 1
Table 4 Efficiencies of the instrument optical components. 1
Table 5 Estimated imaging countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU 1
Table 6 Estimated imaging countrates (count/s/pixel) at Solar minimum at 0.5 AU 12
Table 7 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU 12
Table 8 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum at 0.5 AU 12

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 7 of 17

1 Abstract

This document describes the 3-channel configuration of the METIS experiment. This configuration has been derived from the original 4-channel configuration as a consequence of the descoping of the He-imaging channel decided by ASI during the coordination meeting with Thales-Alenia Space on July the 13th, 2012. In the <u>3-channel configuration</u>, the following instrument components are <u>descoped</u>:

METIS

- 1. Al filter;
- 2. filter wheel mechanism.

In this configuration, the spectrographic channel is maintained with the following <u>modification</u>, with respect to the 4-channel configuration:

- 1. SVLS grating 1800 l/mm \Rightarrow 3600 l/mm:
- 2. eccentric \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter.

In the 3-channel configuration, the UV and EUV throughputs <u>increase</u> by the following factors, with respect to the 4-channel:

- 1. factor of 2.5 increase for the UV-imaging,
- 2. factor of 9.4 increase for the EV spectrography.

2 Revised 3-channel Experiment Science Objectives

The baseline 4-channel Multi-Element Telescope for Imaging and Spectroscopy - METIS – for the Solar Orbiter mission was designed to combine the imaging and spectroscopic capabilities of coronagraphs and spectrometers. With respect to the original METIS 4-channel configuration, the 3-channel configuration loses the HeII Ly- α imaging and the HI Ly- α spectrography, while it maintains the visible-light pB imaging, the HI Ly- α imaging and the HeII Ly- α spectrography. In addition, unlike in the 4-channel METIS, the 3-channel configuration may include also the MgX, 60.9 nm, spectrography.

4-channel	3-channel
linearly polarized K-corona imaging (590-650 nm)	linearly polarized K-corona imaging (590-650 nm)
narrow-band UV imaging HI Lyman α (121.6 nm)	narrow-band UV imaging HI Lyman α (121.6 nm)
narrow-band extreme UV imaging HeII (30.4 nm)	descoped
spectrography HI 121.6 nm (1 st) HeII 30.4 nm (4 th)	spectrography HeII 30.4 nm (2^{nd}) MgX 60.9 nm (1^{st})

Table 1 summarizes the different science performances of the 4- and 3-channel configurations.

Table 1 Science performances of the 4- and 3-channel METIS configurations

3 Instrument Parameters

Table 2 summarizes the main differences (in red) between the 4- and 3-channel instrument components.

Instrument Component		4-channel METIS configuration	3-channel METIS configuration	
M1 coating		UV-capped multilayer @ 30 nm	UV-capped multilayer @ 30 nm	
M2 coating		UV-capped multilayer @ 30 nm	Interference coating Al/MgF ₂ @ 122 nm	
	coating	UV-capped multilayer @ 30 nm	multilayer @ 30 nm (no UV-cap required)	
SVLS	ruling frequency	1800 lines/mm	3600 lines/mm	
grating	wavalanatha	30.4 nm @ 4 th	30.4 nm @ 2 nd	
	wavelengtils	121.6 nm @ 1 st order;	60.9 nm @ 1^{st} order;	
EUV filter		Al filter	none	
UV filter		Interference A1/MgE.	Interference Al/MgF ₂ with clear aperture	
			for the EUV spectrographic channel	
Filter wheel mechanism		yes	no	
UV detector openable door		yes	yes	

Table 2 Main differences (in red) between the 4- and 3-channel instrument components

3.1 EUV Spectrographic Channel

The EUV spectrographic path of the 3-channel configuration maintains the same FOV (**Errore. L'origine riferimento non è stata trovata.**) and geometry of the 4-channel UV/EUV spectrographic path. The frequency of the SVLS grating is increased from 1800 l/mm to 3600 l/mm, and the HeII 30.4 nm radiation is diffracted at 2^{nd} order instead of at 4^{th} order.

Figure 1 Multi-slits FOV at 0.28 AU for the EUV spectroscopic path. The FOV sector for spectroscopy is about $\pm 40^{\circ}$. The remaining FOV is used for simultaneous imaging of visible-light pB and HI Ly- α . The spectrum is imaged on the portion of the detector that is not used to acquire the coronal image.

The HeII, 30.4 nm, at 2^{nd} and the MgX, 60.9 nm, at 1^{st} order are diffracted through an eccentric ~ \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter (Figure 2).

Figure 2 Interference filter with MgF₂ *substrate and* Al/MgF₂ *coating for the* VL- *and* UV *imaging channels with clear aperture (bottom) for the* EUV *spectrographic channel*

The grating diffracts at 1^{st} order the HI Ly- α , 1216 nm, and the OVI doublet, 103.2/103.7 nm, outside of the focal plane into a light trap. (Figure 3)

Figure 3 The grating diffracts at 1^{st} order the HI Ly- α , 1216 nm, and the OVI doublet, 103.2/103.7 nm, outside of the focal plane into a light trap.

The optical specifications of the EUV spectrographic channel in the METIS 3-channel configuration are summarized in Table 3. In red are marked the differences from the 4-channel configuration (in parentheses).

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 11 of 17

Telescope Mirror	M1 sector illuminated by the coro	±40° (±32°)		
	Into the spectroscopy path			
	Entrance arm		250.0 mm	
	Exit arm		500.0 mm	
	Magnification	1	2.2	
		Slit # (FOVs)	3 (1.5°, 1.8°, 2.1°)	
		Width	30 µm m (44 arcsec	
Spoctromotor	Multiclit		spatial resolution)	
Spectrometer		Height (FOV)	1.5 mm (± 0.3°)	
		Separation on	0.72 mm	
		the slit plane		
	Incidence angle (α)	·	≈0°	
	Diffraction angle (β)	12.6°		
	2 nd order of 30.4 nm, 1 st order of 6			
	Ruled area	60 mm (// to the		
		grooves) × 23 mm		
	Radius	302.272 mm		
	Control Duling Frequency	2000 ar/man		
	Central Ruling Frequency	3600 gr/mm		
SVLS grating		(1800 gr/mm)		
	Ine Spacing Variation Factors		3.6	
	(as defined in Zemax) α		1.27e-4	
	T = lines/micron, y = distance from β		-7.0e-7	
	grating center (mm)	24	0	
	$1/T = 1/T_0 + \alpha y + \beta y^2 + \gamma y^3$	Ĩ	°	
	Pixel size	15 μm		
	Spatial Plate Scale	10 arcsec/pixel		
Focal Diano	Spectral Resolution (4-pixel resolu	0.018 nm at 30.4 nm		
FUCALPIALLE	$30 \ \mu m$ slit-width $ imes$ 2.2 magnificati	0.037 nm at 60.9 nm		
	Spectral separation between cons	0.44 nm at 30.4 nm		
		0.88 nm at 60.9 nm		

METIS

Table 3 Optical specifications of the EUV spectroscopy path.

4 Instrument Sensitivity Estimate

The total instrument throughput derived from the component level efficiencies is shown in Table 4.

	4-channel		3-channel		
Ortical Common ant	Spectrography Imaging		Spectrography		Imaging
Optical Component	4 th ord. 30.4 nm	121.6 nm	2 nd ord. 30.4 nm	1 st ord. 60.9 nm	121.6 nm
Mo/Si ML reflectivity (M1)	0.2	0.34	0.2	0.12	0.34
Mo/Si ML reflectivity (M2)	N/A	0.34	N/A	N/A	N/A
Al/MgF ₂ refletivity (M2)	N/A	N/A	N/A	N/A	0.88
Mo/Si ML reflectivity (grating)	0.2	N/A	0.2	0.12	N/A
Grating diffraction efficiency.	0.1	N/A	0.28	0.6	N/A
Filters transmission/reflectivity	0.3	0.2	N/A	N/A	0.2
Detector QE (KBr)	0.3	0.17	0.3	0.2	0.17
Total throughput	3.6e-4	3.9e-3	3.4e-3	1.7e-3	1.0e-2

Table 4 Efficiencies of the instrument optical components

4.1 Expected countrates

In order to verify that the overall performances of the METIS instrument meet the science requirements, the expected countrates (*i.e., counts-of-detected-photon/s/pixel*) have been estimated from typical coronal radiances (*photons/s/cm²/sr*) in the three wavelength bandpasses of METIS. The instrument spatial plate scale is: 10 arcsec/pixel = 2.42 e-9 sr/pixel (cfr. Table 3)

Countrates of imaging paths

The expected imaging countrates (*i.e.*, *counts-of-detected-photon/s/pixel*) are given in Table 5(at 0.28 AU) and Table 6 (at 0.5AU).

Streamer				Coronal	Hole
FOV [°]	R _☉	121.6 nm (3-channel)	121,6 nm (4-channel)	121.6 nm (3-channel)	121,6 nm (4-channel)
1.50	1.58	3.95E+00	1.54E+00	4.31E-01	1.68E-01
1.80	1.89	4.69E+00	1.83E+00	3.33E-01	1.30E-01
2.10	2.21	3.79E+00	1.48E+00	2.15E-01	8.39E-02
2.40	2.52	2.82E+00	1.10E+00	1.36E-01	5.31E-02
2.70	2.84	1.97E+00	7.70E-01	7.62E-02	2.97E-02
3.00	3.16	1.33E+00	5.19E-01	4.28E-02	1.67E-02

Table 5 Estimated imaging countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU

Streamer				Coronal Hole		
FOV [°]	$ m R_{\odot}$	121.6 nm	121.6 nm	121.6 nm	121.6 nm	
		(3-channel)	(4-channel)	(3-channel)	(4-channel)	
1.50	2.82	1.56E-01	6.08E-02	6.08E-03	2.37E-03	
1.80	3.38	2.01E-01	7.82E-02	5.79E-03	2.26E-03	
2.10	3.94	1.58E-01	6.18E-02	2.59E-03	1.01E-03	
2.40	4.51	1.10E-01	4.28E-02	7.23E-04	2.82E-04	
2.70	5.07	7.28E-02	2.84E-02	1.53E-04	5.96E-05	
3.00	5.64	4.51E-02	1.76E-02	2.90E-05	1.13E-05	

Table 6 Estimated imaging countrates (count/s/pixel) at Solar minimum at 0.5 AU

Countrates of the spectroscopy path

The expected imaging countrates (*i.e.*, *counts-of-detected-photon/s/pixel*) are given in Table 7 (at 0.28 AU) and Table 8 (at 0.5AU).

Streamer				Coronal Hole	
Angle	Rsun	30.4 nm	30,4 nm	30.4 nm	30,4 nm
		(3-channel)	(4-channel)	(3-channel)	(4-channel)
150	1.58	1.26E-01	1.33E-02	4.85E-03	5.13E-04
1.80	1.89	1.47E-01	1.56E-02	2.83E-03	3.00E-04
2.10	2.21	1.14E-01	1.21E-02	2.63E-03	2.78E-04

Table 7 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum from perihelion at 0.28 AU

Streamer				Coronal Hole		
Angle	Rsun	30.4 nm	30,4 nm	30.4 nm	30,4 nm	
		(3-channel)	(4-channel)	(3-channel)	(4-channel)	
1.50	2.82	4.40E-03	4.66E-04	1.48E-04	1.57E-05	
1.80	3.38	4.63E-03	4.90E-04	2.93E-04	3.10E-05	
2.10	3.94	2.93E-03	3.10E-04	3.43E-04	3.63E-05	

Table 8 Estimated spectroscopy countrates (count/s/pixel) at Solar minimum at 0.5 AU

5 Conclusions

In the <u>3-channel configuration</u>, the following instrument components are <u>descoped</u>:

- 1. Al filter;
- 2. filter wheel mechanism.

In this configuration, the spectrographic channel is maintained with the following <u>modification</u>, with respect to the 4-channel configuration:

- 1. SVLS grating 1800 l/mm \Rightarrow 3600 l/mm:
- 2. eccentric \emptyset 15 mm clear aperture on the \emptyset 70 mm interference filter.

In the 3-channel configuration, the UV and EUV throughputs <u>increase</u> by the following factors, with respect to the 4-channel:

- 1. factor of 2.5 increase for the UV-imaging,
- 2. factor of 9.4 increase for the EV spectrography.

6 Applicable Documents

6.1 Reference Documents

7 Acronyms

ADC	Analog to Digital Converter
AFT	Abbreviated Functional Test
AIT	Assembly, Integration and Test
AME	Absolute Maximum Error
AOCS	Attitude and Orbit Control System
AOI	
APE	Absolute Pointing Error
APS	Active Pixel Sensor
AU	Astronomical Unit
BB	Breadboard
BBM	Bread-Board Model
CCD	Charge Couple Device
CFRP	Carbon Fiber Reinforced Plastic
CME	Coronal Mass Ejections
CNR	Consiglio Nazionale delle Ricerche
CNRS	Centre National de la Recherche Scientifique
Col	Co-Investigator
CoM	Center of Mass
CoPI	Co-Principal Investigator
COR	Baseline coronagraph proposed for METIS
CPI	Cross Products of Inertia
CTE	Coefficient of Thermal Expansion
DMS	Data Management System
DOF	Degree of freedom
ECSS	European Cooperation for Space Standardization
EDAC	Error Detection And Correction
EDWM	UV detector window mechanism
EEPROM	Electrically Erasable Programmable Random Access Memory
EEO	Extended External Occulter
EEOM	EEO Mechanism
EGSE	Electrical Ground Support Equipment
EM	Electrical Model
EM	Experiment Manager
EO	External occulter
EOM	External occulter Mechanism
EP	Entrance Pupil
EPROM	Erasable Programmable Random Access Memory
EQM	Electrical Qualification Model
ESA	European Space Agency

REF: METIS-OATO-??? DATE: 15 JUL 2012 ISSUE 0 – REV 0 – DRAFT 0 page 16 of 17

EUI	EUV Imager
EUV	Extreme UltraViolet
EUVC	EUV Channel
FDIR	Fault Detection. Isolation and Recovery
FFF	Front End Electronics
FFM	Filter Exchange Mechanism
FFT	Full Functional Test
FM	Flight Model
FOV	
FDA	Focal Plano Assembly
	Field Programmable Cate Array
IFGA ES	Flight Spore
	Flight Spale
GSE	Ground Support Equipment
H/W	Hardware
Her	Aluminum low-pass filter of the coronagraph
HELEX	Heliophysical Explorers
HERSCHEL	Helium Resonance Scattering in the Corona and Heliosphere
HF	Narrow-band multilayer filter of the coronagraph
HGA	High Gain Antenna
HK	Housekeeping
HVPS	High Voltage Power Supply
HWRP	Half Wave Retarder Plate
IAC	Instituto de Astrofísica de Canarias
IAPS	Intensified Active pixel sensor
IAS	Institut d'Astrophysique Spatiale
IASF	Istituto di Astrofisica Spaziale e Fisica cosmica
IDP	Instrument Development Plan
IEO	Inverted External Occulter
IF	Interface
IFE	Instrument Front End
IFSI	Istituto di Fisica dello Spazio Interplanetario
II S	Instrument Line of Sight
INAF	Istituto Nazionale di AstroFisica
INFM	Istituto Nazionale Eisica della Materia
	Internal Occulter
	Internal Occulter Mechanism
IR	Infrared
	Laboratoire d'Astronbysique de Marseille
	Laboratorie d'Astrophysique de Marseille
	Lauring Current Linners
	Line Of Sight
100	Line Of Signit
	Lyoi Siop
LVPS	Low voltage Power Supply
IVIU	Sun-disk rejection mirror of the coronagraph
M1	Primary mirror of the coronagraph
M2	Secondary mirror of the coronagraph
MCP	Micro Channel Plate
METIS	Multi Element Telescope for Imaging and Spectroscopy
MGSE	Mechanical Ground Support Equipment
ML	Multilayer

MOC	Mission Operation Center
Mol	Moment of Inertia
MOM	Pag. 58
MPPU	METIS Processing & Power Unit
MPS	Max-Planck-Institut fuer Sonnensystemforschung
MSSI	Mullard Space Science Laboratory
N/A	Not Applicable
	Not Applicable National Argonautics and Space Administration
NASA	National Aleonaulus and Space Auministration
NRL	Naval Research Laboratory
OAA	Osservatorio Astronomico di Arcetri
OACN	Osservatorio Astronomico di Capodimonte Napoli
OACt	Osservatorio Astronomico di Catania
OAPa	Osservatorio Astronomico di Palermo
OAR	Osservatorio Astronomico di Roma
OATo	Osservatorio Astronomico di Torino
OATs	Osservatorio Astronomico di Trieste
OGSE	Optical Ground Support Equipment
OP	Off Pointing
PA	Product Assurance
PI	Principal Investigator
	Polarization Modulation Package
	Politocnico di Torino
	Policiation Option System
	Polarization Optics System
PROM	Programmable Read Only Memory
QE	
RD-n	Reference Document n
ROIC	Read Out Integrated Circuit
ROS	Relay Optics System
RPE	Relative Pointing Error
S/C	Spacecraft
S/W	Software
SCORE	Sounding-rocket Coronagraphic Experiment
SEA	Shield Entrance Aperture
SEP	Solar Energetic Particles
SMM	Structural Mathematical Model
SO	Solar Orbiter
SOHO	Solar and Heliospheric Observatory
SpW	Space Wire
STOM	Structural Thermal Ontical Model
	Sphorical Varied Line-spaced
	To Bo Confirmed
	To De Commined
TBW	
	Tele Command
IEC	I hermo Electric Coooler
TLM	Telemetry
ТМ	Telemetry
TSOM	Time Share Observing Mode
TVLS	Toroidal Varied Line-spaced
UFOV	Unobstructed Field Of View

Università di Aquila
Università della Calabria
Università di Firenze
Università di Padova
Università di Padova
Università di Perugia
Università di Pavia
Università di Roma
Unit Optical Reference Frame
Unit Reference Frame
Ultraviolet
UV channel
Ultraviolet Detector
Visible Detector
Visible Imager & Magnetograph
Visible-light
Visible Light Channel
Vacuum ultraviolet