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1. Abstract

This report presents a basic description of the physical mechanisms and relative formulas
for the UV emission from solar corona. It is mainly focused on the H I Lyα 1216 and O VI
1032/1038 doublet spectral lines observed by UVCS aboard SOHO. Some elements for diagnos-
tics of electron density and abundances are presented. On the basis of present formulation the
expected He II 304 intensity is preliminarily computed.

2. Radiative component

The radiative component of an emission line in the solar corona is due to the resonant
scattering of the disk radiation by coronal ions/atoms, the physical mechanism is represented
in figure 1 (upper). The total intensity (photons cm−2 s−1 sr−1) by following Noci, Kohl and
Withbroe (1987); Noci et al. (1993), can be written as

Ir =
b B12 hλ0

4π

∫

l.o.s
ni dl

∫

Ω
p(φ) dω

∫ +∞

0
Iex(λ − δλ)Φ(λ,n′) dλ , (1)

where: b is the branching ratio of considered transition (adimensional), h is the Planck constant
(erg s), λ0 is the reference wavelength of the transition (cm), ni is the numerical ion/atom
density (cm−3), p(φ) takes into account the geometry of the scattering process, φ is the angle
between the direction of the incident radiation n′ and the line–of–sight (l.o.s.). Iex(λ−δλ) is the
intensity spectrum (photons cm−2 s−1 sr−1 cm−1) of incident radiation from lower atmosphere,
δλ is the shift of this profile with respect to the reference profile due to the outflow velocity, w,
of coronal absorbing ions/atoms in the direction n′:

δλ =
λ0

c
w · n′ . (2)

Φ(λ,n′) is the normalized coronal absorption profile along the direction of the incident
radiation, which can be assumed to be gaussian in the assumption of a maxwellian velocity
distribution of the absorbing particles

Φ(λ,n′) =
1

σλ(n′)
√

2π
exp

[

−1

2

(

λ − λ0

σλ(n′)

)2
]

(cm−1), (3)

where σλ(n′) is the standard deviation of the absorption profile related to the kinetic temperature
T
n
′ along the direction of the incident radiation

σλ(n′) =
λ0

c

√

kB T
n
′

mp A
(cm), (4)

where: c is the light speed (cm s−1), kB is the Boltzmann constant (erg K−1), mp is the proton
mass (g), A is the ion mass number (adimensional),

In order to obtain the total radiation emitted by resonant scattering we integrate along
the l.o.s, dl, over the solid angle subtended by the source of exciting radiation, dω, and the
product between the incident and absorption profile is integrated over the wavelength, dλ.

B12 is the Einstein coefficient for stimulated emission, the values of this coefficient are
computed for considered transitions following Rybicki and Lightman (1979); Foukal (1990):

B12 =
4π2e2

hν0mec
f12 =

4π2e2λ0

hmec2
f12 (cm2 erg−1 s−1), (5)
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where: f12 is the atomic oscillator strength (adimensional), e is the electron charge (Stat-
Coulomb), me is the electron mass (g), ν0 is the reference frequency of the transition ν0 = c/λ0

(s−1).

Note: Lang (1978) defines the Einstein coefficient as

B12,Lang =
πe2

meE12
f12 ,

where E12 = hν0, therefore the relation between this definition and equation 5 is

B12 =
4π

c
B12,Lang .

The physical constants are reported in Table 1 and the atomic parameters in Table 2.

Fig. 1.— Left: Resonant (upper) and Collisional (lower) Scattering processes. Right: Geometry
of the resonant scattering process.

Table 1: Physical Constants

Constant Symbol Value

Speed of Light c 2.9979 × 1010 cm s−1

Planck constant h 6.6261 × 10−27 erg s
Boltzmann constant kB 1.3807 × 10−16 erg K−1

Proton mass mp 1.6725 × 10−24 g
Electron mass me 9.1091 × 10−28 g
Electron charge e 4.8000 × 10−10 StatCoulomb

3. Collisional component

The physical mechanism producing the collisional component of an emission line in the
solar corona is the excitation of a coronal ion/atom by collision with a free electron. This process
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Table 2: Atomic Parameters of Considered Transitions

Spectral Line λ0 ν0 f12 B12 b A
(Å) (∗) 1015 (s−1) 109 (∗∗)

H I Lyα 1215.67 2.46605 0.4162 8.4838 1 1
H I Lyβ 1025.72 2.92273 0.0791 1.3604 0.88 1
H I Lyγ 972.50 3.08267 0.0290 0.4729 1 ? 1
O VI 1032 1031.91 2.90519 0.1310 2.2667 1 16
O VI 1037 1037.61 2.88924 0.0648 1.1274 1 16
S XII 499 499.37 6.00336 0.0730 0.6112 1 ? 28
S XII 521 520.66 5.75788 0.0350 0.3056 1 ? 28
He II 304 304.78 9.83627 0.4162 2.1021 1 4

∗ 1Å=10−8cm
∗∗ cm2erg−1s−1

is represented in figure 1 (lower). Following Noci, Kohl and Withbroe (1987), the total intensity
(photons cm−2 s−1 sr−1) of the collisional component of a coronal line can be written as

Ic =
b

4π

∫

l.o.s
ne ni qcoll dl , (6)

where: ne is the electron density (cm−3), qcoll is the collisional coefficient (Noci, Kohl and
Withbroe 1987) (or Seaton 64 ?),

qcoll = 2.73 × 10−15 T
−

1

2
e (E12)

−1 f12 ḡ exp
−

E12

kBTe (cm3 s−1), (7)

where: Te is the electron temperature (K), E12 is the transition energy E12 = hν0 = hc/λ0 (erg),
ḡ is Gaunt factor computed by using Mewe (1972) approximation. The code used to compute the

collisional coefficient is qcoll.pro in the directory $HOME/PRO/UV CODE/PRO DEV.

4. Radiative component approximations

The functions p(φ), which take into account the geometry of the resonant scattering, for
the spectral lines of interest have been calculated by Beckers and Chipman (1974): for HI Lyα
line: p(φ) = (1/4π) (11 + 3 cos2 φ)/12, for O VI 1032 line: p(φ) = (1/4π) (7 + 3 cos2 φ)/8, for
O VI 1037 line: p(φ) = 1/4π.
Because of the scattering angle, φ, is close to 90◦, the value of p(φ) can be approximated to
1/4π with an uncertainty no more than 7% for HI Lyα and no more than 10% for O VI 1032
(Figure 3). Therefore we use the following approximation

∫

Ω
p(φ) dω ∼ 1

4π
Ω , (8)

The solid angle subtended by the source of resonant radiation at distance r from Sun center is
computed (Noci, Kohl and Withbroe 1987) as

Ω = 2π

(

1 −
√

1 − 1

x2

)

, (9)
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where x = r/R⊙ is the heliocentric distance in solar radii units (adimensional).
Note: At large heliocentric distances, r ≫ R⊙, the solid angle can be approximated by Ω ∼ π/x2, see

also Table 3.

Table 3: Solid Angle Approximations

x Ω Ω ∼ π/x2 Ratio

1.50 1.60 1.40 1.14
1.75 1.13 1.03 1.10
2.00 0.84 0.78 1.08
3.00 0.36 0.35 1.03

Fig. 2.— Resonant scattering geometric function

We define a Doppler Dimming Function as

FD(w) =

∫ +∞

0
Iex(λ − δλ)Φ(λ,n′) dλ (photons cm−3 s−1 sr−1). (10)

This function should be integrated along the l.o.s., in fact the absorption profile varies
because of the variation of the kinetic temperature in the direction of incident radiation, T

n
′ ,

along the l.o.s., and also the shift, δλ, of the intensity exciting profile varies because of the
different outflow velocities w along the l.o.s.
We know (Antonucci et al. 2000) that the heating of coronal ions is preferentially in the direction
across the magnetic field, whereas in the radial direction, which is close to the direction of
the incident radiation, n′, the kinetic temperature remains close to the proton temperature
(Figure 4), which do not varies too much with heliodistance.

Therefore we assume that the absorption profile is constant along the l.o.s. and for the
kinetic temperature, which determines the width of that profile, we assume two extreme cases:
a) isotropy, T

n
′ = Tl.o.s. and b) anisotropy, T

n
′ ∼ Te or T

n
′ ∼ Tp ∼ THI ??

In the following computations we use always the expression FD(w) that can assume two different
values: FD,is(w) and FD,an(w) for isotropic and anisotropic hypothesis respectively.

In order to move out of the integral along the l.o.s. also the incident spectrum, Iex(λ−δλ),
we point out that the outflow velocity, w, has to be considered as an average velocity along the
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Fig. 3.— Incident radiation and absorption profiles at different height along the l.o.s.

l.o.s. Then by using equation 8 and 10 the radiative component, given by equation 1, becomes

Ir =
b B12 hλ0

4π

Ω

4 π
FD(w)

∫

l.o.s
ni dl , (11)

where the integral
∫

l.o.s ni dl is the column density of the emitting ions/atoms along the l.o.s..

5. Collisional component approximations

As shown in the equation 7, qcoll depends on Te, which in the polar coronal hole varies in
the range between 106K to 7 × 105K in the range of heliodistance considered. For example for
O VI 1032 line with Te = 106K we obtain qcoll = 2.10 × 10−8cm3 s−1, and with Te = 7 × 105K
we obtain qcoll = 2.28 × 10−8cm3 s−1. (Figure 5). Therefore we assume qcoll constant along the
l.o.s., with an uncertainty no more than 8%. Moreover for HI Lyα line, and similarly HI Lyβ
line, as shown in Figure 5, the collisional coefficient is constant in the considered Te range. For

Fig. 4.— HI Lyα and OVI 1032 Collisional Coefficient as a function of the Electron Temperature

these reasons we write the collisional component, given in the equation 6, as

Ic ∼ b

4π
qcoll

∫

l.o.s
ne ni dl , (12)
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If we consider the ”average“ electron density along the l.o.s., 〈ne〉i, the previous equation can
be written as 1

Ic ∼ 〈ne〉i
b

4π
qcoll

∫

l.o.s
ni dl . (13)

6. Separation of Collisional and Radiative Components

In order to separate the collisional and radiative contributions to a spectral line we need
a pair of line from the same ion/atom indicated as a and b line, e.g for hydrogen we define the
Lyα 1216 as the a line and the Lyβ 1025 as b line, while for oxygen: the lines at 1032 Å and
1037 Å are referred as a and b line respectively.

The observed intensities of a and b lines in the solar corona, Iobs,a and Iobs,b, are the sum
of the collisional and radiative components described in the previous sections therefore we can
write

Ir,a + Ic,a = Iobs,a , (14)

Ir,b + Ic,b = Iobs,b , (15)

where Ir,a, Ic,a and Ir,b, Ic,b are the intensities of the radiative and collisional components of the
a and b observed line, respectively.

We define the ratios, R1 and R2, of the radiative and collisional components of the two
lines:

Ir,a

Ir,b
= R1 , (16)

Ic,a

Ic,b
= R2 . (17)

By using the approximate expression for the radiative component, given in equation 11,
with indices a and b to denote the parameters of the two lines, we obtain 2

R1 =
ba

bb

B12,a

B12,b

λ0,a

λ0,b

FD,a(w)

FD,b(w)
=

ba

bb

f12,a

f12,b

λ2
0,a

λ2
0,b

FD,a(w)

FD,b(w)
. (18)

On the basis of the approximate equation of the collisional component (equation 12) the ratio
R2 can be written as

R2 =
ba

bb

qcoll,a

qcoll,b
. (19)

The ratio R1 is function of the kinetic temperature, T
n
′ , and the outflow velocity, w, through

the function FD(w). The ratio R2 is function of the atomic parameters and, through qcoll, of
the electron temperature, Te.

With the calculated ratios, R1 and R2, it is possible separate the components by solving
the system given by the equations 14, 15, 16 and 17 therefore we obtain the collisional and
radiative component of a and b observed lines as a function of the outflow velocity, w, with the
following equations

1See section 6 for discussion about the quantity 〈ne〉i.
2For OVI lines λ0,a/λ0,b ∼ 0.995 and (λ0,a/λ0,b)

2 ∼ 0.989, whereas for HI lines λ0,a/λ0,b ∼ 1.185 and
(λ0,a/λ0,b)

2 ∼ 1.404.
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Ir,b =
Iobs,a − R2 Iobs,b

R1 − R2
, (20)

Ic,b =
Iobs,a − R1 Iobs,b

R2 − R1
, (21)

Ic,a = R2 Ic,b , (22)

Ir,a = R1 Ir,b . (23)

Note that in the case of OVI lines the ratio
FD,1032(w)
FD,1037(w) is a decreasing function of the outflow

velocity, because of the pumping of the OVI 1037 Å line, therefore also the ratio R1 is a decreasing

function. Finally for this reason, by using equation 20, we can see that the radiative component of

the OVI 1037 Å line increases with outflow velocity when is calculated from the separation of the line

components. This fact has no physical meaning, but is due to the used diagnostics.

In the density code (uv dens.pro) the program to separate the components is sep rad cll.pro,
in that program there are also the constraints on the line components that must be greater than
zero, then we do not take into account the outflow velocity regions where these constraints are
not satisfied.

6.1. Typical Values of R1 and R2

In the case of OVI lines, the ratio R2 has a constant value because, by using equation 7,
we can write

R2,OV I =
qcoll,1032

qcoll,1037
∼ f12,1032

f12,1037
= 2.02 . (24)

For HI Lyα and HI Lyβ lines the ratio between the collisional coefficients varies no more than
1–2% around the value 5.52 (Figure 6), in the electron temperature range between 7× 105K to
106K, therefore also for these lines R2 can be considered constant

R2,HI ∼ 1

0.88
5.52 = 6.27 . (25)

Note: Raymond et al. (1997) found Ic,Lyα/Ic,Lyβ = 7.57 for logT=6.2, the difference with respect

my value is about 20%. The increasing of the ratio between the two collisional coefficients is only few

percent from logT=6.0 to logT=6.2 (Figure 6), therefore I don’t know how to explain this difference,

unless Raymond et al. (1997) compute the collisional coefficient in a different way.

To estimate the typical values of R1 we can consider the static condition, w = 0 km s−1.
In this case by considering for both lines, a and b, the same absorption and exciting profiles 3

we can write the approximate expression:

FD,a(0)

FD,b(0)
∼ λ0,b

λ0,a

Idisk,a

Idisk,b
, (26)

3The absorption profiles of two lines from the same atom/ion have the same width if the profiles are considered
in terms of thermal velocity,

σv =

s

kB T
n
′

mp A
,

but in terms of wavelength, σλ, given by equation 4, the width of the profiles depends on λ0, therefore the
approximation used in the equation 26 is strictly valid only when the functions FD(w) are obtained by integrating
over the thermal velocity, whereas in this formulation FD(w) are obtained by integrating over the wavelength
(equation 10).
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Fig. 5.— Ratio of HI Lyα and HI Lyβ Collisional Coefficients as a function of the Electron
Temperature

where Idisk,a and Idisk,b are the total intensity of exciting radiation of a and b line, respectively
4 .

Therefore the equation 18 in the static case can be written as

R1,OV I ∼ 2.01
Idisk,1032

Idisk,1037
, (27)

R1,HI ∼ 7.09
Idisk,Lyα

Idisk,Lyβ
, (28)

for OVI and HI lines, respectively. By using different disk intensity measurements (see Table 6)
we obtain the values of R1 reported in the following Table 5 .

Table 4: Estimated Values of R1 in static conditions with different disk intensities

disk → Wilhelm Raymond Vernazza

R1,OV I 4.18 4.00 4.00
R1,HI 885 900 727

We can plot R1,OV I as a function of the outflow velocity, w, when the kinetic temperature
is fixed, so we verify that R1,OV I(w) it is a decreasing function of w because of the pumping of
the OVI 1037 Å line.

4With this approximation the expression of R1, given in equation 18, can be written as

R1 =
ba

bb

f12,a

f12,b

λ0,a

λ0,b

Idisk,a

Idisk,b
,

used by Marocchi, Antonucci and Giordano (2001).

5In coronal hole, where the absorption profile is usually very broad, Tk ∼ 107 K, the ratio R1,OV I actually is
always lower then 4.00, because of the pumping of Ir,1037 by CII 1037.02 Å line. The values of R1,OV I reported
in Table 4 are obtained in coronal streamers or in coronal holes with anisotropic velocity distribution hypothesis.
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7. ”Average“ electron density

From equation 13 we obtain the ”average“ electron density along l.o.s.

〈ne〉i ∼ Ic,k 4 π

bk qcoll,k

∫

l.o.s ni dl
(cm−3), (29)

where Ic,k is the collisional component, bk is the branching ratio and qcoll,k is the collisional coef-
ficient of an observed k line. In our analysis we use as k lines the spectral line with not negligible
collisional component, therefore the OVI 1032 Å or the HI Lyβ 1025 Å. The column density
can be obtained from equation 11 by using spectral lines with dominant radiative component,
therefore we use OVI 1032 Å or HI Lyα 1216 Å referred with index j,

∫

l.o.s
ni dl =

Ir,j (4 π)2

bj B12,j h λ0,j Ω FD,j(w)
(cm−2), (30)

where FD(w) is a function of the average outflow velocity along the l.o.s. 6 . A quite strong
approximation resides in the fact that the subtended solid angle, Ω, depends on the position
along the line of sight.

Finally, by replacing the column density in the equation 29, the ”average“ electron density
can be written as

〈ne〉i ∼ bj B12,j h λ0,j

bk qcoll,k

Ω

4π

Ic,k

Ir,j
FD,j(w) (cm−3). (31)

Some words are needed about the quantity 〈ne〉i. The usual definition of average value is

〈ne〉 def
=

∫

ne dl
∫

dl
, (32)

but here we consider the ”average“ electron density weighted over the ion distribution along the
l.o.s

〈ne〉i =

∫

neni dl
∫

ni dl
, (33)

which by using equation 41 and assuming the ionization equilibrium of the coronal plasma along
the l.o.s., can be approximated to

〈ne〉i ∼
∫

n2
e dl

∫

ne dl
=

〈n2
e〉

〈ne〉
, (34)

here we can see that, with this approximation, the quantity 〈ne〉i is independent of the ion
distribution, ni, therefore we expect 〈ne〉OV I = 〈ne〉HI = 〈ne〉, unless not ionization equilibrium,
intensity calibration problems and/or filling factor effects and/or code bug (!?). The effect due
to filling factor has to be discarded.

6The radiative and collisional components of a pair of lines are not independent, therefore the column density
and also the electron density obtained is the same by using OVI 1037 Å instead of OVI 1032 Å or HI Lyβ 1025 Å
instead of HI Lyα 1216 Å. In fact the ratio between the column density obtained by using a line (Ir,j = Ir,a) and
b line (Ir,j = Ir,b) in equation 30 is equal to unity, as far as the electron density through the equation 31. This
can be verified by using the following relation:

Ir,a

Ir,b
=

ba

bb

B12,a

B12,b

λ0,a

λ0,b

FD,a(w)

FD,b(w)
,

obtained from equations 16 and 18.
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From equation 31 and equations 20–23 we can study the behavior of the ”average“ electron density
as a function of the observed intensities of a and b lines, 〈ne〉i(Iobs,a, Iobs,b). By considering the condition
R1 > R2, which is everywhere satisfied for HI lines and for OVI lines it is satisfied for low outflow velocity
(w ≤ 100 km s−1), we find that

δ〈ne〉
δIobs,a

< 0

and
δ〈ne〉
δIobs,b

> 0 .

7.1. Relation Between 〈ne〉i,r0
and ne(r0)

Here we draw an approximate relation between ”average“ electron density, 〈ne〉r0
, calcu-

lated at given heliocentric distance, r0, and the electron density in the plane of the sky at the
same height, ne(r0). This relation can be calculated by using the definition of equation 34 and
considering a spherical symmetric geometry with a known radial dependence of the electron
density:

ne(r) ∝ r−b , (35)

where b = 5, 4, 3, 2, decreasing with heliocentric distance (Koutchmy 1977; Lallement, Holzer
and Munro 1986; Gouttebroze et al. 1999). At a given heliocentric distance, r0, in the plane of

l

r0

Observer

l.o.s

Fig. 6.— Line–of sight and radial direction

the sky, the electron density along the l.o.s. as a function of the distance, l, from the plane of
the sky, can be written as

ne(l, r0) = ne(r0)
rb
0

(l2 + r2
0)

b/2
, (36)

the average value along the l.o.s., which is the quantity that we derive with our diagnostics, by
following the definition of equation 34 is

〈ne〉i,r0
= lim

N→∞

∫ Nr0

0 n2
e(l, r0) dl

∫ Nr0

0 ne(l, r0) dl
(37)

here by replacing ne(l, r0) with equation 36 we obtain

〈ne〉i,r0
= ne(r0) rb

0 lim
N→∞

∫ Nr0

0
dl

(l2+r2
0
)b

∫ Nr0

0
dl

(l2+r2
0
)b/2

. (38)
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Table 5:

b Cb C−1
b

2 0.50 2.00
3 0.59 1.70
4 0.625 1.60

Finally by solving the integrals with different values of b parameters we obtain

〈ne〉i,r0
= Cb ne(r0) , (39)

where the parameter Cb, reported in Table 5, is a constant value depending on b only.

8. Element abundances

As Withbroe et al. (1982) we introduce the relation

ni =
ni

nel

nel

nH

nH

ne
ne , (40)

where ni is the ion density (density of element in ”i” ionization state), nel is the element density
(summed over all the ionization states), nH is the hydrogen density and ne is the electron density.
The term ni/nel = Ci is the ionization fraction (atoms/ions concentration) and it is function
of the electron temperature, Te. The term nel/nH is the element abundance with respect to
hydrogen. In the case of fully ionized atoms and He abundance equal to 10%, as typical coronal
plasma condition, we have nH/ne=0.83. Therefore the equation 40 can be written as,

ni = 0.83
nel

nH
ne Ci , (41)

by using this relation, the resonantly scattered component, given by equation 11, can be written
as

Ir ∼ 0.83 b B12 hλ0

4π

Ω

4 π
FD(w)

∫

l.o.s

nel

nH
ne Ci dl , (42)

and the collisional component from equation 12 becomes

Ic ∼ 0.83
b

4π
qcoll

∫

l.o.s

nel

nH
n2

e Ci dl . (43)

The abundance, nel
nH

, can be considered as constant along the l.o.s., moreover we assume

that the plasma is in ionization equilibrium 7 along the l.o.s., that is Ci is constant, therefore
the previous equations can be written as

Ir ∼ 0.83 b B12 hλ0

4π

Ω

4 π
FD(w)

nel

nH
Ci

∫

l.o.s
ne dl , (44)

Ic ∼ 0.83
b

4π
qcoll

nel

nH
Ci

∫

l.o.s
n2

e dl . (45)

7The ionization equilibrium assumption is reasonable in streamers but it needs more discussion to be applicable
in coronal holes.
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We consider the radiative component of two observed spectral lines emitted one by ions,
such as OVI ions (nel

nH
= nO

nH
), indicated as Ir,OV I , and the second one emitted by hydrogen

atoms (nel
nH

= 1), Ir,HI , then by computing the ratio between these two intensities represented
by equation 44 we obtain

Ir,OV I

Ir,HI
∼ bOV I

bHI

B12,OV I

B12,HI

λ0,OV I

λ0,HI

FD,OV I(w)

FD,HI(w)

nO

nH

COV I

CHI
. (46)

Finally we obtain the element abundance from the ratio of radiative components

(

nO

nH

)

r

∼ Ir,OV I

Ir,HI

bHI

bOV I

B12,HI

B12,OV I

λ0,HI

λ0,OV I

FD,HI(w)

FD,OV I(w)

CHI

COV I
, (47)

where the index ”OVI” can represent whether OVI 1032 Å or OVI 1037 Å line, and ”HI”
whether HI Lyα 1216 Å or HI Lyβ 1025 Å line 8 9 .

Fig. 7.— Neutral Hydrogen atom (HI) and Oxygen ions 5+ (OVI) fraction as a function of the
Electron Temperature (left), ratio of the OVI and HI concentration in the temperature range
between 8.0 × 105 K (5.90) and 1.6 × 106 K (6.20).

Similarly if we consider the collisional components, represented by equation 45, we obtain

8In any case, by using different choices: OVI 1032 Å or OVI 1037 Å and HI Lyα 1216 Å or HI Lyβ 1025 Å,
we obtain exactly the same abundance. See also Note 6.

9In the case of static corona, and with strong approximations on absorption and exciting profiles, we can write

FD,HI(0)

FD,OV I(0)
∼

r

AHI

AOV I

λ0,OV I

λ0,HI

Idisk,HI

Idisk,OV I
,

where
q

AHI

AOV I
= 1

4
, therefore the Oxygen abundance from radiative components becomes

„

nO

nH

«

r

(0) ∼ Ir,OV I

Ir,HI

bHI

bOV I

f12,HI

f12,OV I

λ0,HI

λ0,OV I

Idisk,HI

Idisk,OV I

CHI

COV I

1

4
,

which, unless the term
λLyβ

λ1032
∼ 0.994, is the same equation used by Raymond et al. (1997) and Marocchi, Antonucci

and Giordano (2001), where δνOV I

δνHI
= 1

4
.
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the element abundance as
(

nO

nH

)

c

∼ Ic,OV I

Ic,HI

bHI

bOV I

qcoll,HI

qcoll,OV I

CHI

COV I
. (48)

In these equations the concentration of ions with respect to the total density of the element
is calculate, for given Te, from ionization equilibrium curves by Arnaud and Rothenflug (1985)
and Landini and Monsignori Fossi (1990) (Figure 8 left). The values of the ratio COV I

CHI
are

consistent with the value 15200 used by Marocchi, Antonucci and Giordano (2001), obtained at
Temperature Log(Te) = 6.20 (Figure 8 right).

Note that in literature the element abundance with respect to Hydrogen abundance, Ael,
is usually given as

Ael = log
nel

nH
+ 12 (49)

with this notation the abundance nel
nH

is given by

nel

nH
= 10Ael−12 (50)
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9. Doppler dimming function computation ...

In order to calculate for different lines the function FD(w) given in the equation 10, we
need to know the intensity profile, Iex(λ), of the incident radiation from lower atmosphere, that
is the chromospheric HI Lyα and HI Lyβ spectral lines and the OVI lines coming from the
transition region. For every considered line the exciting spectrum has to satisfy the following
relation:

∫ +∞

0
Iex(λ) dλ = Idisk , (51)

where Idisk is the total intensity measured by observing the solar disk. In the case of hydrogen
lines the profiles used are those observed by Gouttebroze et al. (1978) (Figure 8) and the value
of Idisk can be chosen from a set of different determination showed in Table 6. More recent
measurements of the HI Lyα disk intensities and profiles have been performed by Lemaire et al.
(2002) and described in the Appendix I. In the case of oxygen lines the possible choices of the
measured total exciting intensity are also reported in Table 6. For the OVI lines profile shapes
we use gaussian functions with the broadening observed by Warren et al. (1997), that for OVI
1032 Å corresponds to a temperature of 1.52× 106 K (FWHM = 227 mÅ) and for OVI 1037 Å
to 1.32×106 K (FWHM = 212 mÅ), a different choice is the assumption that the two OVI lines
are formed at the same temperature (e.g. 1.52× 106 K). In in case of OVI 1037 Å line we take
into account also the two nearby CII lines at 1037.02 Å and 1036.34 Å. The intensities of these
lines are given by Wilhelm et al. (1998) and reported in Table 6, the broadenings, corresponding
to a temperature of 5.06 × 105 K (FWHM = 152 mÅ), are given by Warren et al. (1997).

Fig. 8.— Left: Disk Intensity Profile of HI Lyα (left panel) and HI Lyβ (right panel).

For absorption profile, Φ(λ,n′), we need to make an assumption on the kinetic temperature
along the direction of the incident radiation (equations 3 and 4), we consider the case of isotropic
velocity distribution, Tn′ = Tl.o.s., and in the anisotropic case two different assumption on the
kinetic temperature: Tn′ = Te and Tn′ = Tp ∼ THI , we have to verify the differences in terms
of ne due to these assumptions for anisotropic case. In the case of anisotropy the code is
not correct, because does not take into account that the absorption profile is determined by
electron temperature only in the radial direction (see fig 2 and fig 4), all the not-radial incident
radiations over the subtended solid angle feel a velocity distribution that have a component due
to l.o.s distribution. Finally the function FD(w) is obtained for the velocity range between 0 to
600 km s−1 by numerical integration of the equation 10 over the wavelength 10

10To check the goodness of the numerical computation we can compare the Doppler dimming function numer-
ically computed at w = 0 km s−1 for the OVI 1032 Å line with the analytical solution of equation 10, which is
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Table 6: Disk Intensities∗

Spectral Line A B C D E
H I Lyα 4.35 × 1015 4.45 × 1015 4.93 × 1015 5.24 × 1015 4.00 × 1015

H I Lyβ 3.95 × 1013 4.13 × 1013 3.90 × 1013

H I Lyγ 6.66 × 1012 8.67 × 1012 8.30 × 1012

O VI 1032 1.29 × 1013 1.94 × 1013 1.60 × 1013

O VI 1037 6.16 × 1012 9.70 × 1012 8.00 × 1012

C II 1036 1.87 × 1012

C II 1037 2.33 × 1012

He II 304 1.11 × 1014 3.83 × 1014

∗( photons cm−2 s−1 sr−1)
A H I Lyα from Giordano (1998), He II 304 Quiet Sun from Brosius et al. (1996)
B H I Lyα from Lemaire et al. (1998), He II 304 Active Region from Brosius et al. (1996)
C Wilhelm et al. (1998)
D Raymond et al. (1997)
E Vernazza and Reeves (1978)

Examples of FD(w) functions computed for HI Lyα and Lyβ lines and for OVI 1032 Å
and OVI 1037 Å lines are plotted in Figure 10. The used parameters relative to the incoming

possible for this line because both the exciting, Iex(λ), and the absorption, Φ(λ), profiles can be assumed to be
gaussian. Therefore in this case the equation 10 for w = 0 km s−1 becomes

FD,1032(0) =
Idisk,1032

σtot

√
2π

. (52)

where Idisk,1032 is the total disk intensity, and σtot is the quadratic sum, σtot =
q

σ2

λ,abs + σ2

λ,disk, of the

coronal absorption profile width, σλ,abs (see equation 4) and the exciting profile width, σλ,disk. For exam-
ple with Idisk,1032 = 1.94 × 1013, Tn′ = Tl.o.s. = 2.42 × 107 and Tdisk,1032 = 1.52 × 106 we obtain
FD,1032(0) = 1.95× 1013 photons cm−2 s−1 sr−1 Å−1, which has to be compare with the value obtained
by code: FD,1032(0) = 1.91× 1013 photons cm−2 s−1 sr−1 Å−1, OK. In the case of gaussian exciting and ab-
sorption profiles the equation 10 can be analytically integrated over the wavelength (λ) to obtain the following
function of the outflow velocity (w):

FD,1032(w) =
Idisk

σtot

√
2π

exp

2

4−1

2

„

1

σλ,disk

λ0

c
w

«2

3

5 exp

2

4

1

2

„

σλ,abs

σλ,disk

1

σtot

λ0

c
w

«2

3

5. (53)

We verified that the agreement between the analytical computation and the numerical solution is very good (see
also test program a n Dd.pro in the directory $HOME/PRO/UV CODE/REPORT).

Table 7: Disk Parameters used in the FD(w) functions computation

Line Disk Intensity Disk Profile
H I Lyα Raymond et al. (1997) Gouttebroze et al. (1978)
H I Lyβ Raymond et al. (1997) Gouttebroze et al. (1978)
O VI 1032 Raymond et al. (1997) Tdisk,1032 = 1.52 × 106

O VI 1037 Raymond et al. (1997) Tdisk,1037 = Tdisk,1032

C II 1036 Wilhelm et al. (1998) Tdisk,1036 = 5.06 × 105 ∗

C II 1037 Wilhelm et al. (1998) Tdisk,1037 = Tdisk,1036

∗Warren et al. (1997)



– 17 –

Fig. 9.— Examples of FD(w) functions for HI Lyα, HI Lyβ, OVI 1032 Å and OVI 1037 Å lines.
The solid curves are computed for isotropic case and dashed curves for maximum anisotropy.

disk radiation are reported in Table 7, whereas for kinetic temperature the observed values
are reported in Table 8. The electron temperature, Te = 8.00 × 105, is extrapolated to this
heliocentric distance from values obtained by David et al. (1998) at lower height. For every
line we report the FD(w) function calculated for isotropic case (solid line, Tn′ = Tl.o.s) and for
maximum anisotropic case (dashed line, Tn′ = Te).
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10. Electron density computation ...

An example of the ”average“ electron density 〈ne〉i, computed by using the OVI lines as a
function of the outflow velocity, for different heights in a Coronal Hole observed on May 1996, is
reported in Figure 10. The physical parameters: line intensities and kinetic temperatures along
the l.o.s., Tl.o.s., observed by UVCS are in Table 8. We use the kinetic temperature of OVI 1032
line for OVI 1037 also. The outflow velocity acceptance region is determined by the conditions
that both radiative and collisional components are greater that zero (see Section 5.)

Table 8: UVCS Observed parameters in a Coronal Hole

Height I1032 I1037 Tl.o.s,OV I

(R⊙) (*) (*) (◦K)
1.54 1.51 × 109 5.31 × 108 2.42 × 107

1.74 3.53 × 108 1.41 × 108 5.87 × 107

1.94 8.23 × 107 4.25 × 107 1.29 × 108

2.44 6.22 × 106 5.47 × 106 3.05 × 108

∗( photons cm−2 s−1 sr−1)

Fig. 10.— Electron density as a function of outflow velocity at different heliocentric distance
for radial kinetic temperature Tk,r equal to Te (bold solid lines), Tp (dotted lines), (2×Tp) (thin
dashed lines), (4×Tp) (dot–dashed lines), (8×Tp) (triple dot–dashed lines), (Tl.o.s.) (bold dashed
lines).
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11. Expected HeII 304 intensity from observed HI Lyα

The expected intensity in a coronal streamer of the radiative component of HeII 304 in
the solar corona can be evaluated with some approximations from the coronal observed intensity
of the HI Lyα. The approximated radiative component of a coronal spectral line given by the
Equation 11 can be written with an analytical formula, by assuming that the exciting and
absorption profiles have both a gaussian shape (see Equation 53) and with the subtended solid
angle approximation given by the equation 9. We can write the Einstein’s coefficients as a
function of the reference wavelengths (λ0,HI , λ0,HeII) with the Equation 5, and for the sake of
simplicity we write the ratio between the radiative component of HI Lyα and HeII 304 lines in
the case static case (Equation 53 with w = 0 becomes Equation 52):

(

IHeII

IHI

)

r

∼
λ2

0,HeII

λ2
0,HI

Idisk,HeII

Idisk,HI

σtot,HI

σtot,HeII

∫

l.o.s nHeII dl
∫

l.o.s nHI dl
(54)

The ions densities, nHI and nHeII , by using the Equations 40 and 41 we can written as

nHeII = 0.83
nHe

nH
CHeII ne, (55)

nHI = 0.83 CHI ne, (56)

where nHe
nH

is the Helium abundance relative to the Hydrogen, the Neutral Hydrogen concen-
tration, CHI , and the Helium ions 1+ (HeII) concentration, CHeII , as functions of Electron
Temperature, Te, are shown in Figure 11. By assuming a small variation of Te along the l.o.s

Fig. 11.— Left: Neutral Hydrogen atom (HI), Helium ions 1+ (HeII) and Oxygen ions 5+
(OVI) fraction as a function of the Electron Temperature. Right: Ratio of the HeII and HI
concentration in the temperature range between 6.3×105 K (5.80) and 2.0×106 K (6.30).

we can consider an approximately constant ratio of the ions concentrations (see Figure 11 Right
panel) and a constant Helium abundance, therefore we can drop out the integration along the
l.o.s to obtain:

(

IHeII

IHI

)

r

∼
λ2

0,HeII

λ2
0,HI

Idisk,HeII

Idisk,HI

σtot,HI

σtot,HeII

nHeII

nHI

CHeII

CHI
(57)

where the reference wavelengths, λ0,HeII and λ0,HI , are given in Table 2, the disk intensities,
Idisk,HeII and Idisk,HI in Table 6 (the expected disk ratio is in the range from 2.2 × 10−2 to
5.0 × 10−2), the Helium abundance is estimated in the range from AHe=10.90 (Feldman 1992)
to AHe=10.80 (Fludra and Schmelz 1999), therefore from nHe

nH
= 7.9×10−2 to nHe

nH
= 6.3×10−2,
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assuming Te = 1.0 × 106 K the ionization ratio CHeII
CHI

is about 110 (see Figure 11 left panel),
finally the parameters σtot are given by the following equation:

σtot,HI =
√

σ2
λ,HI,abs + σ2

λ,HI,disk

σtot,HeII =
√

σ2
λ,HeII,abs + σ2

λ,HeII,disk

where the standard deviation of the coronal gaussian profiles, σλ,abs, are related to the kinetic
temperature with the Equation 4, and the width of the disk profiles, σλ,disk are given by Brosius
et al. (1996) for the HeII line (FWHM = 85.0 mÅ in the Quiet Sun and FWHM = 62.1 mÅ in
the Active Region) and computed by a gaussian fitting of the HI Lyα line profile by Lemaire et
al. (2002) (see Appendix I).
Assuming a Quiet Sun profile we have: σλ,HeII,disk = 0.0360 Å and σλ,HI,disk = 0.34 Å, and
the ions coronal temperature equal to the electron temperature, Te = 1.0 × 106 K, we have
σλ,HeII,abs = 0.046 Å and σλ,HI,abs = 0.37 Å, then we found

σtot,HI

σtot,HeII
∼ 8.7, and finally the

expected intensity ratio of radiative components of HeII 304 and HI Lyα is

(

IHeII

IHI

)

r

∼ 0.1 ÷ 0.2

In order to estimate the total intensity of the HeII 304 we have to take into account also the
collisional component, while this component is negligible for the HI Lyα. An evaluation of the
collisional HeII emission from a coronal streamer described with the Electron Temperature and
Density given by Gibson and Fludra (1999) has been performed by Landini (2001) at 1.5R⊙:
IHeII,c ∼ 4.0 × 108

We can perform the HeII intensity evaluation in a coronal streamer with a different as-
sumption on the coronal ions temperature. By assuming as coronal temperature for the HI atoms
the observed kinetic temperature in a coronal streamer below 2.0 R⊙, Tk,HI = 1.5 × 106 K, we
have that σλ,HI,abs = 0.45 Å; for the HeII ions we assume an average temperature between the
observed HI and OVI temperature, Tk,OV I = 2.9 × 106 K, then Tk,HeII = 2.2 × 106 K, from
which we get σλ,HeII,abs = 0.068 Å, therefore we found

σtot,HI

σtot,HeII
∼ 7.3. In this case the radiative

intensity of the HeII line is reduced of about 20 % with respect the previous evaluation. Finally
assuming the same temperature for OVI and HeII ions the intensity reduction is anyhow lower
then 30 %.

(

IHeII

IHI

)

r

∼ 0.07 ÷ 0.16
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12. Appendix I – HI Lyα disk profiles

Recent measurements of the HI Lyα disk intensities and profiles have been performed by
Lemaire et al. (2002) from SUMER observations at different periods of the solar cycle activity
from Jul 1996 to Aug 2001.

The code used to compute the HI Lyα disk profiles is read lyaprof.pro and the data are for example

Lalpha May2000 20.data in the directory $HOME/PRO/UV CODE/REPORT/HI DISK LEMAIRE2002.

Fig. 12.— Sample of the HI Lyα disk intensity profiles from Lemaire et al. (2002)
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