STOCC - SCORE Control Software

Technical Report

STOCC - SCORE Control Software

Prepared by

Lino Mastrodomenico

June 2008
Version 1.0

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 1 of 29

STOCC - SCORE Control Software

Version management

No Date Changes Author

1 2008-06-20 First version L. Mastrodomenico

Project manager: S. Fineschi

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 2 of 29

STOCC - SCORE Control Software

Contents

1. INTRODUCTTON...ueeeeeeeeeennnmmmnnssececeeeressnsssssssssssossesssnsssssssssssssssssnss 4
) I I SN0 <e1: 3010, 0 YU 4
1.2 OBIECTIVES. et ttieiiiiieeeeeeeeeeee et eeeeeeeenanns 4

2. ARCHITECTURE OVERVIEW.....ccucccceeeeeeeeeennnnnennnssonseeeesses 5

3. REQUIREMENTS...ccetetuuuuuuueeeeeeeeeeeeensenssnssnssossesssassnsssssssssssssssssssssssssssssssssssssssnssssssssssssnsssessnsssses 5

4. THE ASCI APPLICATION...ccuuuuuuceeeeeeeeeeenannnnnnncssseesesossssssssssssossosssssssssssssssssssssssssssssossssssssssssss 5
4.1. THE CHOICE OF THE PROGRAMMING LANGUAGE....ettiiiiitetieeeeiieiiieeeeeeeeeeeeiieeeeeeeeeeeeeiieteeeeeeeeeeeeenennnn. 5
4.2. THE USE OF METAPROGRAMMING IN ASClL . iiuiuiiiiiiiiiiiiieiiiiiiiiiiieeeee e, 6
4.3. THE PROGRAMMING MODEL. . eeeeuuuiiiiiiiieeeeeeeeeeiieeeeeeeeeeeeiiteeeeeeeeeeeiaeeeeeeeeeeeiae e eeeeeereeeeeeeeeeeneeeenane, 7

5. THE STOCC PLUGIN COLLECTION...cceeeeeeeeeueameenscosoceeeeeessnssssssssssssssssssassssssssssssosessssssssssss 8
5.1. GRAPHICAL USER INTERFACE. . ittiuttuuuiiiiiiiitteeeeeeeeieteeeeeeetiieeeeeeeeteieeeieeeeeeeeteeeeeeeeseiesiieeeeeeeeeens 8
5.2. FURTHER IMPROVEMENTS. 11ttuueitieiiitettieieeeteeestteeieeeeeetetteteeeeeeetiateeeeeeeeeeteseteeeeeeeeereseeeeeeeeeeeeeees 9

0. LLICENSE ... ccceteeeeeeennnnnnnssosssssossssssssssssssosssnsssss 10

7. CONCLUSTONS. . cceeeruuuueneneeoneeeeessasnnnssssssssossses 10

8. APPENDIX A - SOURCE CODE...ccccceeeeeeeeeeeeessassssssssssssssosssssssassssssssssssssssssssssssssssssssosssssssssss 11
8 L e AL PY ettt ettt ettt ettt et aeteete ittt aeteeteteteattataeeaeaetbeterarerareereeeaeaees 11
8.2, CAMERA/CFGSPACEWIRE.PY . eeueutuiieeeiieieietiieeeeeeieieteeeeeeeeeseiteteeeeeeeeiiiteeeeeeeeeaiieeeeeeseeeeiisereeeeeaanns 11
8.3. CAMERA/MONITOR PARALLEL.PY..euuteereieseeastessenseeeteenstenssessseaseaistenssennsesnseanseesssenseaseannsennsenneanns 12
8.4. CAMERA/RECEIVE IMAGES.PY ..uteutesetenetenstenstententensententeastesteateasessseasassansenseasenseaseasennnennns 13
8.5. CAMERA/SCORE CAMERALPY .uteeuetesteneteeeteasttetteettestteste et et eenttesttesseenseesseeateeatesnseenteanseesneennneanns 14
8.0. CAMERA/STAR DUNDEE.PY ..teeuseisteisteenseeastenstesseasteatteseteeseesseease et s enntesseaseenstesnseaseanssenseseeans 15
8.7. CAMERA/STAR _DUNDEE _TYPES.PY..uetteuteeuteaseenstessteaesseastensseeseenstenssesassenseeaseeseennsesseannseneesneeanns 17
8. CAMERA/SUB.PY ..tteeiiiiieieiieee et eeee et et ee ettt eeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeiietesereeeeess 17
8.9, CAMERA/USBSPACEWIRE.PY ..eeueuteiieeeiieieiueteieeeeeeieieteeeeeeeeeaeeteteeeeeeeeieitteeeeeeeeeaiieeeeeeseeaaaiisereeeeeeanns 19
810, CAMERA/UTILS.PY ceiiiiiiiiieiiieeeeeeee ettt et eee et ee ettt eeeeeaeeeeeeeeeeeeiieeteeeeeeeeeeenieeeeeeeeeeeeas 20
8.11. GUI/ ABOUTDIALOG.PY uueteiiiiiiiiiiiieeeiieeee et eeeee e eeeeeeeeeeeiiieeeeeeeeeeeeeeeeeeeeeans 21
812, GUY/CMDERAME.PY ettt ettt ee ettt eeeeee e eeeeeeeeeeeeeieeeeeeeeeass 21
813 GUI/GULPY . tttiiiiie ettt et et ee et eeeeeeeeeeeeeeeeeeeeeeaeeeteeeeeeeeiereeeeeeaans 23
8.14. GUY/IMAGEFRAME.PY.evviiiiiiiiiiiiiieeiiee oottt e iiieeeeeeeeeeeeieieeeeeeaes 27
8.15. LOVRC/SCORE LOVRC.PY uuteueteiettisteneeesstesteateate et eeattaasteeetaansaanseanstenseenseeassesteenseataesssennsennaeanns 28

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 3 of 29

STOCC - SCORE Control Software

Abstract

ASCI (Adaptable Space Control Interface) is a generic software framework for command
and control of astronomical hardware (mainly telescope cameras and related optical
devices, but can also be used for controlling ground test systems). It is cross-platform and
designed to be flexible enough to be reused for different devices and different projects
using a plugin system. The development of a new plugin has been kept as easy as possible
and at the same time the user interface provided by plugins is seamlessly integrated within
ASCI from an end-user's point of view.

STOCC (SCORE Test & Operations, Command & Control) is one of the first ASCI
plugins. It offers a real-world test for the architecture and provide ground tests and
calibration to the SCORE project (SCORE, Sounding CORonagraph Experiment, is a
payload for solar corona imaging in the HERSCHEL sounding rocket mission).

1.Introduction

1.1.Background

The SCORE (Sounding CORonagraph Experiment) experiment is a set of two
coronagraphs designed to provide full images of the extended corona in the EUV and
visible light. SCORE is part of the scientific payload of the NASA HERSCHEL (the
Helium Resonant Scattering in the Corona and Heliosphere) sounding rocket mission,
which is composed of SCORE and the Extreme Ultraviolet Imaging Telescope (EIT).

The first HERSCHEL rocket launch date is August 1, 2008. Depending on the success of
the first launch, a second and a third launch are foreseen upon NASA approval.

1.2.0bjectives

The main goal of the project is the development of an integrated test software for space-
and astronomy-related devices, to be used for calibration and both pre-/post- flight testing.

The first application of this system is within the SCORE project, but the software must be
flexible enough to be used in future projects with similar requirements (but different
hardware) and even applications not strictly related to space or astronomy, such as the
control of ground test equipment (e.g.: a cleanroom).

This implies the necessity to interface to a wide range of hardware devices (connected to
the control computer through disparate buses and electrical interfaces) and offering a great
variety of different GUIs (graphical user interfaces), specialized for each specific
application.

The project is sponsored by the Italian region Piedmont and, partly, by the European
Union.

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 4 of 29

STOCC - SCORE Control Software

2.Architecture overview

To satisfy the above goals the overall architecture of the project is split in two big parts:

1. ASCI (Adaptable Space Control Interface) is a generic software framework for
command and control of cameras and sensors; ASCI is not tied to specific devices
or GUI, but can load hardware drivers and user interfaces using a plugin system;

2. STOCC (SCORE Test & Operations, Command & Control) is a collection of ASCI
plugins that will offer all the specific capabilities required for the SCORE project.

New plugins will be developed as necessary for different devices or projects.

3.Requirements

Apart from the main ASCI/STOCC goals, the requirements for this project are:

1. portability across the three major operating systems (GNU/Linux, Mac OS X and
Microsoft Windows);

2. simple image elaboration capabilities: adding and subtracting two images, in both
16 and 32 bits per pixel, displaying images on the screen in linear and logarithmic
scale, with user interfaces for rfavigating’on common 256-grayscale levels
monitors the very high dynamic range of images captured by modern cameras;

ability to read and write images and related metadata from and to FITS files;

4. ability to save to file the full raw data received from the cameras and possibility to
load the data back at any time (even with no external hardware connected) and
convert it to any other supported format.

It must be also possible to write drivers for a wide variety of hardware interfaces, including
SpaceWire networks, RS-232 serial ports, IEEE 1284 parallel ports, direct communication
with custom-programmed Arduino boards over USB and cards on a PCI-compatible bus. A
possible requirement for programming devices through JTAG (IEEE 1149.1) interfaces has
been examined, but is currently considered not necessary.

4.The ASCI application

ASCI is at the same time an integrated end-user application for the control of astronomical
hardware and a development framework that simplifies the integration of existing device
drivers and the creation of new drivers and their corresponding user interfaces. The
description below reflects this dualism.

4.1.The choice of the programming language

The first programming language that has been considered for the implementation of ASCI
is the National Instruments development environment LabVIEW.

LabVIEW has a number of advantages for this role, including the availability of drivers for
most of the hardware devices used by SCORE and the familiarity with the framework by a
number of people involved with the project. But in the end Python was preferred as the
choice of programming language, mostly because of concerns that reaching the required
flexibility for ASCI and maintaining the software afterwards may have been significantly

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 5 of 29

STOCC - SCORE Control Software

harder with the use of LabVIEW instead of a more general purpose language. LabVIEW
also has the disadvantage of being distributed only by a single vendor on a limited number
of platforms and under a proprietary license with a pretty high price.

Python was selected instead of other common general purpose programming languages
because it has a few features that make it more appropriate for the open and flexible nature
of ASCI; see the sectionsThe use of metaprogramming in ASCI&ndThe programming
modelfor more details.

Still, the interoperability with LabVIEW, C, C++ and Java is required, for accessing
hardware devices that only have (possibly proprietary) drivers for a limited number of
environments. E.g., it's frequent for astronomical devices vendors to provide only drivers
for LabVIEW and/or binary DLL files for Microsoft Windows.

This requirement can be achieved in a number of ways:

* using a separate program for the external language: it runs in a different process
and communicates with ASCI using one or more pipes or internet sockets;

* integrating both languages/environments in the same process: this usually requires
the use of the extending or embedding API of both sides with a small bridge
module written in C. The creation of this module can be simplified or completely
automatized with existing tools such as SWIG, SIP, Boost.Python or Pyrex;

* direct loading and invoking of an existing shared library (e.g., a Windows DLL
file) with the ctypes Python library.

The last case is currently and will probably continue to be the more common; its main
advantage is that it does not require the presence of a compiler during the installation on
the target platform and, starting with Python 2.5, it does not require any dependency
outside of the standard CPython package.

4.2.The use of metaprogramming in ASCI

In this context, metaprogramming can be defined as the writing of a program that
manipulates itself as its data.

A good quotation to keep in mind when doing metaprogramming in Python is the
following one by the Python guru Tim Peters:[Metaclasses] are deeper magic than 99%
of users should ever worry about. If you wonder whether you need them, you don't (the
people who actually need them know with certainty that they need them, and don't need an
explanation about why).”

Having said that, ASCI is one of the few examples where a limited use of
metaprogramming, far from beingblack magic’tan make the creation of plugins easier
and more elegant. The main reason why this happens in ASCI is that a segment of its
clients is composed by the end-programmers who write and maintain the plugin. Their
work is simplified by custom metaclasses that intercept the class creation (which in Python
occurs at runtime, not during the compilation) and transform it in two ways:

* modify class attributes, integrating them in the inter-thread event system (see the
sectionThe programming mode};’

* automatically register the presence of the class, making it available in the GUI and
allowing the creation of class instances when necessary.

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 6 of 29

STOCC - SCORE Control Software

The overall effect is that class properties that must be constant (e.g., the name of a driver,
the hardware to which it gives access, the status variables and their range) can be created in
a declarative style, usually simpler than an imperative style here, and communication
between plugins and the rest of the application is very straightforward: if, e.g., a driver
receives a status update from its hardware, it can simply assign the new value to the
corresponding variable and the GUI (and potentially a running script) will be updated
automatically.

4.3.The programming model

One of the basic requirements for ASCI is making the addition of new device drivers for
arbitrary hardware as easy as possible. This has far reaching consequences for the choice
of the ASCI programming model, because drivers are usually built around one or more
event loops that send and/or receive data from the device. An underlying proprietary driver
may impose the use of its event loop, potentially incompatible with other ASCI event loops
(i.e., other drivers or the GUI event loop), but even when this is not the case, writing and
maintaining a driver is usually simpler when a plain I/O loop can be used, without any of
the complications that can arise from the use of a framework based on the select or poll
system calls.

To achieve this degree of simplification, each driver must run in its own thread or process.
Currently ASCI uses threads for concurrent execution because Python offers a powerful
built-in threading module. The downside is that CPython, the Python implementation
which is expected to be commonly used for running ASCI, has a Global Interpreter Lock
(GIL). The GIL in many ways makes thread programming easier than it is in most
languages by making sure that only one thread can manipulate the interpreter's Python
objects at a time, but it also implies that on multiprocessor or multi-core systems a
program can only make use of one processor at a time, except when the GIL is explicitly
released by low-level CPU intensive tasks or blocking I/O operations.

If this proves to be a significant performance bottleneck on systems with multiple
processor cores, switching from threads to multiple processes (each one with its
independent GIL) should be relatively simple using the processing library, that is in many
ways a drop-in replacement for the threading modules currently used in ASCI.

Unfortunately the use of a concurrent execution model in turn may introduce race
conditions, and this is especially true in a framework such as ASCI, which can potentially
have a high number of interacting threads, running code independently written by different
people at different times. Most race conditions are avoided, at the cost of introducing
potential deadlocks, because every non thread-safe object is either only used by a single
thread or passed between different threads using the Python standard library Queue class (a
multi-producer, multi-consumer FIFO queue, here always used with a single consumer).
To reduce the possibility of deadlocks Queue is the only class in ASCI that uses locks and
it is in turn only used in a single module that provides a simple proxy class. This class
hides the complexity of the multi-threaded model from the plugin code: it can be used as a
wrapper for any Python object and guarantees that all method call of the wrapped object
will be executed in the same thread, independently from the calling thread (each thread that
requires this kind of interactivity has two queues, for receiving method calls and call
results from other threads respectively).

Furthermore if two or more resources may ever need any type of coordinated activity (e.g.,
a SpaceWire node and a serial port connected to the same device) and can be required by
more than one thread (a pretty common situation in ASCI, where scripts and end-users can

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 7 of 29

STOCC - SCORE Control Software

concurrently control the hardware), they are always otwnedby a single thread that
coordinates all the accesses to them. This model ensure that the remaining deadlocks arise
only when a thread directly or indirectly calls a method in the same thread through the
proxy class. These bugs almost always are not time-dependent but occur in a deterministic
way, so they are easier to reproduce and fix.

While not technically a deadlock, a thread can also be indefinitely blocked while waiting
for the completion of native code, usually I/O operations (e.g. a driver that waits data from
an external SpaceWire devices that has been powered off). This class of bugs is largely
avoided with the extensive use of relatively short timeouts (in the order of a second) for all
low-level 1/0 operations except file accesses.

Other race conditions (such as livelocks) are still possible, but they are usually the result of
bugs in the core code, not in plugins, coherently with the goal of making the creation of
new plugins as simple as possible.

5.The STOCC plugin collection

STOCC offers a real-world test for the ASCI architecture and provide two drivers and their
corresponding user interfaces for the SCORE project ground tests and calibrations:

1. the coronagraph camera driver, that will control both the Visible Light Detector
(VLD) and the UltraViolet Detector (UVD) cameras over a SpaceWire link;

2. the driver for the Liquid Crystal Variable Retarder (LCVR, a polarimeter)
controller, which is usually connected to a RS-232 serial port but may also be
operated through the cameras SpaceWire link during the last phase of the tests.

5.1.Graphical user interface

The GUI developed for STOCC is relatively simple and is controlled by a main window
and any number of image windows that can be opened and closed by the user at any time,
independently from each other.

The main window is composed of two main sections: the left one controls the cameras and
the right one controls the LCVR controller.

X STOCC=ASCI =
File Help
Camera LCVRC
SpaceWire: Link1 2 Port: COM1

Dark image Temperature: 0 °C
Exposure: 5s < Target temp.: 20 = °C
Acquire 3 ~ images \Voltage: 2.45V 3

Acquire Webcam mode Set parameters
The camera control section require the setting of four parameters before the start of an
acquisition:
1. physical link on the USB-SpaceWire Brick to which the camera is connected;

2. optionally the request to acquire a dark image;

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 8 of 29

STOCC - SCORE Control Software

3. exposure time (the current hardware is limited to either 5 or 10 seconds;
4. number of images to acquire in the next sequence.
The LCVRC control section is similar, with three parameters:
1. RS-232 port used;
2. target temperature in degrees Celsius;
3. polarization voltage.

When the parameters are sent to the LCVRC, theTemperaturefield is updated with the
actual value read from the controller.

An image window is used for displaying and converting an image acquired or loaded from
file. Any number of image windows can be kept open at the same time, independently by
each other.

‘Image
‘Save as EITS...

Save as PNG...
Save raw data...

Close window

5.2.Further improvements

STOCC, as of June 2008, is still under active development, mostly to adapt it to the
ongoing hardware integration tests and small changes to the communication protocols.

But there are also a couple of more basic improvements that are foreseen in the near future:
more extensive usage of parallel processing and controllability through batch files.

While the infrastructure for extensive multi-threading is already present in ASCI, STOCC
still doesn't use it to its full potential; e.g. During the acquisition of a new image from a
camera the GUI freezes for the duration of the acquisition (usually a few seconds).

Another addition that may be useful in a few circumstances is scriptability; i.e.: it should
be possible for the end user to automate series of commands that are usually executed
through the GUI in a batch file; the scripting language should be Turing complete, but at

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 9 of 29

STOCC - SCORE Control Software

the same time simple enough to write basic automation scripts with minimal training. The
batch mode must not run as a separate environment but be tightly integrated with the
interactive mode (e.g.: if a script modifies the value of a parameter, the new datum must be
immediately visible in the corresponding GUI control; and, vice versa, if the end user
modifies at any time, even during the batch commands execution, a parameter in the GUI,
the corresponding script variable must be updated right away).

The batch files for ASCI will be written in a slightly modified superset of the Python 2
language. This choice has been driven by two reasons: the simple syntax offered by Python
(that makes easier the creation of batch files by scientists without an extended
programming background) and the availability by default of a Python compiler in any
environment in which ASCI can run.

The only differences between the standard Python 2 and the language used for the batch
files are:

e the standard division operator always mean true division (e.g. 1/2 returns 0.5);

e ASCI plugins can offer a number of new application-specific builtin funtions,
classes, instances and constants.

Later ASCI versions may switch to Python 3 (currently scheduled for release in September
2008) as the language for batch files, but the changes to existing files will probably be
trivial (if necessary at all) and an automatic conversion tool will be used if necessary for
the porting.

6.License

ASCI is Free Software (open source) and is currently distributed under the GNU General
Public License (version 2 or later). This license has been chosen because it encourages
public diffusion of source code for scientific applications, it is compatible with the Python
license (version 2.1.1 and newer version) and the licenses of all the libraries used by the
core ASCI application, and is required for compatibility with libraries that may be used by
specific plugins (e.g. the USPP cross-platform Python serial library is available under the
GNU GPL).

Dropping support for version 2 of the license can be evaluated in future releases if the
switch to GPL version 3 is useful, but little to no practical consequences are expected.

ASCI plugins (including STOCC) are considered derivative works of the main program,
but they can still communicate with external proprietary programs and, if desired, they can
be covered by a different GPL-compatible license (e.g. the X11/MIT license) as long as the
terms of the GNU GPL are followed when they are distributed. No restrictions at all are
imposed on plugins and/or modified ASCI versions that aren't distributed to third-parties.

7.Conclusions

In this short report, the main features of the ASCI system have been presented. In
particular, it has been shown how the two-layer architecture gives high flexibility to the
software, making it novel with respect to existing similar systems, which are typically
bound to specific environments or projects. The ASCI framework instead can be easily re-
used for different projects and hardware, with small amounts of reconfiguration work. This
result has been obtained by using particular programming techniques, as illustrated in
section 4.

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 10 of 29

STOCC - SCORE Control Software

8.Appendix A - Source code

8.

#!

S S SR S S o o o o e e e e

1.asci.py

/usr/bin/python

Copyright (C) 2008 Osservatorio Astronomico di Torino

Copyright (C) 2008
Copyright (C) 2006, 2007

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY

Lino Mastrodomenico
Politecnico di Torino

free software; you can redistribute it and/or

the terms of the GNU General Public License

the Free Software Foundation; either version 2

or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
See the

or FITNESS FOR A PARTICULAR PURPOSE.

GNU General Public License for more details.

import wx

from gui.CmdFrame import CmdFrame

if

name == "

main ':

app = wx.PySimpleApp (0)
wx.InitAllImageHandlers ()

cmd frame = CmdFrame (None, -1, '')
app.SetTopWindow (cmd frame)

cmd frame.Show ()

app.MainLoop ()

8.2.cameralcfgspacewire.py

S oSE o o e o e e o e e o 3

Copyright (C) 2008 Osservatorio Astronomico di Torino

Copyright (C) 2008
Copyright (C) 2006, 2007

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY

Lino Mastrodomenico
Politecnico di Torino

free software; you can redistribute it and/or

the terms of the GNU General Public License

the Free Software Foundation; either version 2

or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
See the

or FITNESS FOR A PARTICULAR PURPOSE.

GNU General Public License for more details.

import ctypes
import os

from star dundee types import *
from utils import Namespace, SimpleCLib

if

el

1i

ge

os.name != 'nt':
libname = 'libConfigLibraryUSB.so'
api version = 2.5
se:
libname = 'RouterConfigLibraryDLL.dl1l'

api version =

2.4 4 FIXME: check that everything corresponds to the

b = SimpleCLib (libname, 'CFGSpaceWire ')

t API version =

lib.GetAPIVersion(ctypes.c_double)

.h file

Rev. 32 2008-06-20

STOCC - SCORE Control Software Page 11 of 29

STOCC - SCORE Control Software

assert get API version() == api version # if this fails recheck everything here
TRANSFER SUCCESS = 0

BITO = 1

BIT2 = 4

BRK_CLK 200 MHZ = BIT2 | BITO
BRK_DVDR 1 = 0

is RMAP enabled = lib.IsRMAPEnabled(ctypes.c byte)

enable RMAP = lib.EnableRMAP (None, ctypes.c byte)

set as interface = lib.SetAsInterface(ctypes.c int, star device handle,

ctypes.c byte, ctypes.c byte)

set RMAP destination key = lib.SetRMAPDestinationKey (None, US8)

addr_stack push = lib.AddrStackPush (None, US8)

ret addr stack push = lib.RetAddrStackPush (None, U8)

set link speed = lib.SetLinkSpeed(ctypes.c int, star device handle, U32, U32)

set brick base transmit rate = lib.SetBrickBaseTransmitRate (ctypes.c int,
star device handle,
U32, U32, U32)

router control functions:
rc = Namespace ()
get router control register = lib.GetRouterControlRegister (ctypes.c_int,
star device handle,
ctypes.POINTER (U32))
rc.get disable on silence = lib.RCGetDisableOnSilence (None, U32,
ctypes.POINTER (ctypes.c by
te))
rc.get start on request = lib.RCGetStartOnRequest (None, U32,
ctypes.POINTER (ctypes.c byte))

link control functions:
ls = Namespace ()
get link status control = lib.GetLinkStatusControl (ctypes.c int,
star device handle, U32,
ctypes.POINTER (U32))
set link status control = lib.SetLinkStatusControl (ctypes.c int,
star device handle, U32,
U32)
ls.is auto start = lib.LSIsAutoStart (None, U32, ctypes.POINTER (ctypes.c byte))
ls.is link running = lib.LSIsLinkRunning (None, U32,
ctypes.POINTER (ctypes.c byte))
ls.enable disabled = lib.LSEnableDisabled(None, ctypes.POINTER(U32),
ctypes.c byte)

other functions: (FIXME: what's the exact category?)
start link = lib.StartLink(ctypes.c_int, star device handle, U32)
stop link = lib.StopLink(ctypes.c_int, star device handle, U32)

8.3.camera/monitor_parallel.py

#!/usr/bin/python

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import os

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 12 of 29

STOCC - SCORE Control Software

import sys
from time import strftime

import parallel

if os.name == 'nt': # MS Windows
from parallel.parallelwin32 import pyparallel
def get status(p):
return pyparallel.inp(p.statusRegAdr) // 8 & 15
else:
def get status(p):
return p.PPRSTATUS() // 8 & 15 # FIXME: chk if this works!!!

assert len(sys.argv) == 2
p = parallel.Parallel(sys.argv[1])

old value = None
while True:
if False: # FIXME: remove this

value = p.getInAcknowledge () * 8
value += p.getInPaperOut() * 4
value += p.getlInSelected() * 2
value += p.getInError ()

else:
value = get status(p)

if value != old value:
print strftime('$H:%M:%S'), value
old value = value

8.4.cameralreceive_images.py

#!/usr/bin/python

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import sys

from score camera import SCORECamera
from star dundee import SpaceWireDevice

class DumbSaver (object) :

def init (self, format):
self.format = format
self.n = 0

def call (self, data):

f = open(self.format % self.n, 'wb')
f.write (data)
f.close()

self.n += 1

def main(argv):
assert len(argv) == 3 # FIXME

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 13 of 29

STOCC - SCORE Control Software

link = int (argv] 1]) # physical SpaceWire link to use on the router
num_images = int (argv] 2]) # number of images to acquire

spw = SpaceWireDevice (link, SCORECamera.RECEIVE BUFFER)

camera = SCORECamera (spw)

camera.acquire images (num_images, DumbSaver ('img %04d.bin'))
spw.close ()

if name == ' main_ ':

main (sys.argv)
8.5.camera/score_camera.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import time
class CameraError (Exception): pass

class SCORECamera (object):

#RECEIVE BUFFER = 640 * 1024 # 640K ought to be enough for anybody
RECEIVE BUFFER = 3 * 1024 * 1024 # apparently it isn't :-—(

PACKET TIMEOUT = 3 # default timeout in seconds
IMG_READY TIMEOUT = 20 # used while waiting for an IMG READY

commands to the camera:
CAMERA ON = 1
RESET = 2
START ACQ = 3
START He ACQ =
START_DARK =5
START He DARK = 6
STOP_ACQ = 7
TRANSMIT = 8

4

responses from the camera:
CAMERA READY = 1

ACK_START = 2

ACK_STOP = 3

ACK_TRANS = 4

IMG READY = 5

FAILURE = 6

relations between commands and responses:

EXPECTED RESPONSES = { CAMERA ON: CAMERA READY,
RESET: CAMERA READY,
START ACQ: ACK START,
START He ACQ: ACK_START,
START DARK: ACK_ START,
START He DARK: ACK START,
STOP_ACQ: ACK_STOP,
TRANSMIT: ACK TRANS}

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 14 of 29

STOCC - SCORE Control Software

def init (self, spacewire device):
self.spw = spacewire device

def send command(self, cmd):
s = "\x54' 4+ chr(cmd * 16)
self.spw.send packet (s)
self.check response (self.EXPECTED RESPONSES[cmd])

def check response(self, response):

s = self.spw.receiveipacket()
if len(s) == 1:
s = '12345678"' + s
if len(s) != 9:
raise CameraError ('wrong response lenght: %d' % len(s))
n = ord(s[8])
if n != response:
raise CameraError ('wrong response value: %d (%r)' % (n, s))

def acquire images (self, num_images, callbacks, dark=0, uvd=0):
self.spw.timeout = self.PACKET TIMEOUT
try:
self.send command (self.CAMERA ON)
except Exception:
pass # FIXME: probably already initialized
time.sleep(l) # requested by Maurizio Pancrazzi
self.send command(self.START ACQ + dark * 2 + uvd)

for i in range(num_images) :
self.spw.timeout = self.IMG READY TIMEOUT
self.check response(self.IMG READY)
self.spw.timeout = self.PACKET TIMEOUT # restore the default
time.sleep(l) # requested by Maurizio Pancrazzi
self.send command (self.TRANSMIT)
raw_image data = self.spw.receive packet ()
callbacks[i] (raw_image data)

self.send command(self.STOP ACQ)

8.6.cameral/star_dundee.py

Copyright (C) 2008 Osservatorio Astronomico di Torino

Copyright (C) 2008 Lino Mastrodomenico

Copyright (C) 2006, 2007 Politecnico di Torino

#

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

#

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

High level interface

import ctypes
import cfgspacewire
import usbspacewire

class SpaceWireError (Exception): pass

class SpaceWireDevice (object):

def __init__(self, link, receive_buffer):
self.port = link

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 15 of 29

STOCC -

def

def

def

def

def

def

SCORE Control Software

self.handle = usbspacewire.star device handle()

if usbspacewire.open(self.handle, 0) != True: # open the first device
raise SpaceWireError ("couldn't open the device")

usbspacewire.enable network mode (self.handle, False) # disable network

if usbspacewire.register receive on port(self.handle, link) != True:

raise SpaceWireErrorY"couldn't receive on port %d" % link)
WARNING: apparently set receive buffer cannot be called after
enable interface mode! The STAR-Dundee libraries suck!
self. set receive buffer(receive buffer)
self.enable interface mode ()
self.closed = False

close(self) :

if not self.closed:
self.closed = True
usbspacewire.unregister receive on port (self.handle, self.port)
usbspacewire.close(self.handle)

is _running(self) :

lsc = cfgspacewire.U32 ()
cfgspacewire.get link status control(self.handle, self.port, 1lsc)
n = ctypes.c byte()

cfgspacewire.ls.is link running(lsc, n)

return n.value != 0

start (self): # calling this isn't usually necessary

FIXME: this seems to have a strange side effect: it enables the start
bit (even if no cable is connected) and afterward every time

another device is connected the link goes automatically into the
running state

cfgspacewire.start link(self.handle, self.port)

stop(self): # calling this isn't usually necessary

cfgspacewire.stop link(self.handle, self.port)

stop link doesn't simply clear the start bit, but sets also the

disabled bit (YA Star-Dundee bug?), so reenable it:

lsc = cfgspacewire.U32()
cfgspacewire.get link status control(self.handle, self.port, 1lsc)
cfgspacewire.ls.enable disabled(lsc, False) # disable the disabled bit
cfgspacewire.set link status control(self.handle, self.port, lsc)

_set timeout (self, seconds):
usbspacewire.set timeout (self.handle, seconds)

_get timeout (self):
return usbspacewire.get timeout (self.handle)

timeout = property(get timeout, set timeout)

def

def

_set receive buffer (self, receive buffer):
self.receive buffer = receive buffer
magic = 510 # from the API docs
usbspacewire.set driver read buffer size(self.handle, receive buffer)
usbspacewire.set driver read structs num(self.handle,

receive buffer // magic + 3)

send packet (self, data):

packet id = usbspacewire.ID()

send the packet and wait on it completing
f = open('spw log.txt', 'a')

f.write ('sending packet: %$s\n' % repr(data))
f.close ()

res = usbspacewire.send packet to(self.handle, data, len(data),
chr (self.port), 1, True, packet id)
if res != usbspacewire.TRANSFER SUCCESS:

raise SpaceWireError ("couldn't send the packet™)
f = open('spw log.txt', 'a')
f.write ('success\n')
f.close ()
usbspacewire.free send(self.handle, packet id)

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 16 of 29

STOCC - SCORE Control Software

def receive packet (self):

packetizd = usbspacewire.ID()
properties = usbspacewire.PACKET PROPERTIES ()
buffer = ctypes.create string buffer(self.receive buffer)

setup the receive and wait on it completing

f = open('spw log.txt', 'a')

f.write('waiting packet\n')

f.close ()

res = usbspacewire.read packets(self.handle, buffer, len(buffer), 1,
True, properties, packet id)

if res != usbspacewire.TRANSFER SUCCESS:

raise SpaceWireError ("couldn't receive the packet")
data = buffer.raw

assert ord(datal 0]) == self.port

data = datal l:properties.len]

f = open('spw log.txt', 'a')

f.write('received packet: %s (len %d)\n' % (repr(datal :16]), len(data)))
f.close ()

usbspacewire.free read(self.handle, packet id)
return data

def enable interface mode(self, add identifier=True):
if not cfgspacewire.is RMAP enabled():

cfgspacewire.enableARMAP(True)
magic values for the SpaceWire-USB Brick:
cfgspacewire.set RMAP destination key (0x20)
cfgspacewire.addr stack push(0)
cfgspacewire.addr stack push(254)
cfgspacewire.ret addr stack push(254)

if (cfgspacewire.set as interface(self.handle, True, add identifier) !=
cfgspacewire.TRANSFER SUCCESS) :
raise SpaceWireError ("couldn't set the device to be an interface")

8.7.cameralstar_dundee_types.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import ctypes

all = ['star device handle', 'U8', 'U32']

class star device handle(ctypes.c void p): pass

U8 = ctypes.c uints8
U32 = ctypes.c_uint32

8.8.cameral/sub.py

#!/usr/bin/python

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 17 of 29

STOCC - SCORE Control Software

This program is
modify it under
as published by
of the License,

This program is
but WITHOUT ANY
MERCHANTABILITY
GNU General Publ

S S S S R S o e e e

h
=
o
3

import sys

import Image
import numpy

header size = 8
w, h = 536, 514
#w, h = 514, 536
scartare 12 pixe

free software; you can redistribute it and/or
the terms of the GNU General Public License
the Free Software Foundation; either version 2
or (at your option) any later version.

distributed in the hope that it will be useful,
WARRANTY; without even the implied warranty of
or FITNESS FOR A PARTICULAR PURPOSE. See the
ic License for more details.

__future import division

1l a sx ed a dx e 2 in alto (alla fine dei byte)

def merge bytes(values):
assert len(values) % = 0
new values = []

for i in range
new values

(0, len(values), 2):
.append(values[i] + values[i1 + 1] * 256)

return new values

def normalize (valu
nl = min(value
n2 = max (value
print nl, n2
values = [(n -
return values

es) :
s) # FIXME!!!
s)
nl) * 256 // (n2 - nl) for n in values]
ame) :
ame)

51016: # assume a binary file
ord(c) for c in s]

else: # probably a text file

def load bin(filen
f = open(filen
s = f.read()
f.close ()
if len(s) <=5
values = [
values = s
values = [

assert min
assert max

for i, n 1

if n <

va

print len(valu
if 551007 <= 1
values[:0]

if len(values)

.split ()

int (s) for s in values]
(values) >= -128
(values) < 128

n enumerate (values) :

0:

lues[1] = n + 256

es)

en (values) <= 551008:
= range (8)

== 551015:

values.append(0)

print valueg| :
print wvalues[-

12]
8:]

assert min(values) >= 0
assert max(values) < 256

values = value
values = merge
values = numpy

values.shape =
return 65535 -

s[8:]

_bytes (values)

.array(values, dtype=numpy.int32)
h, w
numpy.transpose (values)

Rev. 32 2008-06-20

STOCC - SCORE Control Software Page 18 of 29

STOCC - SCORE Control Software

def main(argv) :

assert len(argv) == 3
f = open(argv] 1])
s = f.read()
f.close ()
if len(s) <= 551016: # assume a binary file
values = [ord(c) for c in s]
else: # probably a text file
values = s.split()
values = [int (s) for s in values]
assert min(values) >= -128

assert max(values) < 128
for i, n in enumerate (values):
if n < 0:
values[i] = n + 256
print len(values)
if 551007 <= len(values) <= 551008:
values[:0] = range (8)
if len(values) == 551015:
values.append(0)
print wvalues[:12]
print wvalues[-8:]
assert min(values) >= 0
assert max (values) < 256

values = values[8:]

values = merge bytes (values)

print 'len, min, max, average'

print len(values), 65535 - max(values), 65535 - min(values), 65535 -

int (round (sum(values) / len(values)))

values = normalize (values)

im = Image.new('L', (w, h))

i =20

for y in range(h - 1, -1, -1):

for x in range(w - 1, -1, -1):

im.putpixel ((x, vy), values| i])
i4=1

assert len(values) == i

im = im.rotate (270) # FIXME: this may be wrong
#im = im.transpose (Image.FLIP LEFT RIGHT)

im = im.point (list (reversed(range (256))))
im.save (argv] 2])

if name == ' main_ ':

main (sys.argv)
8.9.cameral/usbspacewire.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import ctypes

from star dundee types import *
from utils import SimpleCLib

lib = SimpleCLib ('libSpaceWireUSBAPI.so', 'USBSpaceWire ')

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 19 of 29

STOCC - SCORE Control Software

get API version = lib.GetAPIVersion (ctypes.c double)
assert get API version() == 1.1 # if this fails recheck everything here

class ID(ctypes.c_void p): pass

EOP_TYPE = ctypes.c_int # enum
TRAFFIC TYPE = ctypes.c_int # enum
STATUS = ctypes.c_int # enum
TRANSFER SUCCESS = 2

class PACKET PROPERTIES (ctypes.Structure):
_fields = 1[('len', ctypes.c ulong),
('eop', EOP TYPE),
('type', TRAFFIC TYPE)]
PPACKET PROPERTIES = ctypes.POINTER (PACKET PROPERTIES)
count devices = lib.CountDevices (U8)

open = lib.Open(ctypes.c byte, ctypes.POINTER(star device handle),
ctypes.c_int)

close = lib.Close(None, star device handle)
enable network mode = lib.EnableNetworkMode (None, star device handle,
ctypes.c byte)
register receive on port = lib.RegisterReceiveOnPort (ctypes.c byte,
star device handle, US8)
unregister receive on port = lib.UnregisterReceiveOnPort (ctypes.c byte,
star device handle,
us)

send packet to = lib.SendPacketTo (STATUS, star device handle, ctypes.c void p,
U32, ctypes.c void p, U32, ctypes.c byte,
ctypes.POINTER (ID))
free send = lib.FreeSend(ctypes.c byte, star device handle, 1ID)
read packets = lib.ReadPackets (STATUS, star device handle, ctypes.c void p,
U32, U32, ctypes.c byte, PPACKET PROPERTIES,
ctypes.POINTER(ID))
free read = lib.FreeRead(ctypes.c byte, star device handle, 1ID)
set driver read buffer size = lib.SetDriverReadBufferSize (None,
star device handle,
ctypes.c _ulong)
set driver read structs num = lib.SetDriverReadStructsNum(None,
star device handle,
ctypes.c _ulong)

set timeout = lib.SetTimeout (None, star device handle, ctypes.c double)
get timeout = lib.GetTimeout (ctypes.c double, star device handle)

8.10.cameralutils.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import ctypes

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 20 of 29

STOCC - SCORE Control Software

class Namespace (object) :

pass # KISS

class SimpleCLib (object):

def init (self, name, prefix='"):
self. 1lib = ctypes.CDLL (name)
self. prefix = prefix

def getattr (self, name):

c_func = getattr(self. 1lib, self. prefix + name)
def set types(restype, *argtypes):
c func.restype = restype

c_func.argtypes = argtypes
return c_func
return set types

8.11.gui/AboutDialog.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

import wx

from gui import AboutDialogUI

class AboutDialog (AboutDialogUI) :

def init (self, *args, **kwds):

super (AboutDialog, self). init (*args, **kwds)
self.bind events ()

def bind events(self):
self.close button.Bind(wx.EVT BUTTON, self.on close)

def on close(self, event):
self.Close ()

8.12.gui/CmdFrame.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S S e SR S S o o o e e e e

import wx

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 21 of 29

STOCC - SCORE Control Software

import gui

from AboutDialog import AboutDialog

from ImageFrame import ImageFrame

from camera.score camera import SCORECamera
from camera.star dundee import SpaceWireDevice
from lcvrc.score lcvrc import set parameters

class CmdFrame (gui.CmdFrameUI) :

def init (self, *args, **kwargs):
super (CmdFrame, self). init (*args, **kwargs)
self.about dialog = AboutDialog(self) # FIXME: should
wxGlade!
self.dirname = '' # FIXME
self.seq num = 0
self.bind events ()
FIXME: quick hack:

be created by

self.temperature text ctrl.SetBackgroundColour (self.GetBackgroundColour (

def bind events(self):
system events
self.Bind (wx.EVT CLOSE, self.on close)

File menu

#self.Bind (wx.EVT MENU, self.on test, self.test menuitem)
self.Bind (wx.EVT MENU, self.on open raw, id=gui.OPEN RAW ID)

self.Bind (wx.EVT MENU, self.on exit, id=wx.ID EXIT)
Help menu
self.Bind (wx.EVT MENU, self.on about, id=wx.ID ABOUT)

buttons

#self.Bind (wx.EVT TOGGLEBUTTON, self.on polarimeter status toggle,

self.acquire button)

self.acquire button.Bind(wx.EVT BUTTON, self.on camera acquire)
self.set lcvrc button.Bind(wx.EVT BUTTON, self.on lcvrc set params)

#self.temperature spin ctrl.Bind(wx.EVT SPINCTRL,

self.on_temperature_change)
#self.radio box linlog.Bind(wx.EVT RADIOBOX, self.on scale change)

def on polarimeter status toggle(self, event):

#H self.window_shown[0] = not self.window_ shown[0]

self.polarimeter status dialog.Show(self.window shown[0])
def on temperature change (self, event):

print self.temperature spin ctrl.GetValue ()

def on open raw(self, event):

dlg = wx.FileDialog(self, 'Open raw data', self.dirname, '', 'Raw files
(*.bin) |* .bin', wx.OPEN)
if dlg.ShowModal () == wx.ID OK:
frame = ImageFrame (self)
frame.Show ()
f = open(dlg.GetPath(), 'rb'")
raw = f.read()
f.close()

frame.load raw data(raw)
self.dirname = dlg.GetDirectory()
dlg.Destroy ()

def on lcvrc set params(self, event):
port = self.port text ctrl.GetValue ()
temperature = self.temperature spin ctrl.GetValue ()
voltage = self.voltage choice.GetSelection ()
voltage = [2.45, 3.05, 4.15, 9.996][voltage] # FIXME:
#print 'set', port, voltage, temperature # FIXME
actual temperature = set parameters (port, temperature,

old value = self.temperature text ctrl.GetValue /()

ugly

voltage)

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 22 of 29

STOCC - SCORE Control Software

value = str(actual temperature) + ' ' + old value.split()[1]
self.temperature text ctrl.SetValue (value)
dlg = wx.MessageDialog(self, 'Parameters successfully set', 'LCVRC',

wx .0K)
dlg.ShowModal ()

def on camera acquire(self, event):
link = self.link choice.GetSelection() + 1
dark = self.dark checkbox.GetValue ()

exposure = self.exposure choice.GetSelection()
num_images = self.num images spin ctrl.GetValue ()
#print 'acquire', link, dark, exposure, num images # FIXME
callbacks = []
for i in range(num_images) :
frame = ImageFrame (self)
frame.SetTitle (frame.GetTitle() + ' %d' % self.seq num)

self.seq num += 1
frame.Show ()
if False: # FIXME
frame.loadirawidata(open('z.bin').read())
else:
callbacks.append(frame.load raw data)

spw = SpaceWireDevice (link, SCORECamera.RECEIVE BUFFER)

try:

camera = SCORECamera (spw)

camera.acquire images (num_images, callbacks, dark, exposure)
finally:

spw.close () # always do this, otherwise the drivers may bug out

def on_about (self, event):
self.about dialog.Show ()

def on close(self, event):
FIXME: insert code here if necessary
self.Destroy ()

def on _exit(self, event):
self.Close ()

8.13.qgui/gui.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

S e e o e o e e o e e o S

#!/usr/bin/env python
-*- coding: utf-8 -*-
generated by wxGlade 0.6.3 on Tue Jun 3 21:09:37 2008

import wx

begin wxGlade: extracode
end wxGlade

class CmdFrameUI (wx.Frame) :
def init (self, *args, **kwds):

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 23 of 29

STOCC - SCORE Control Software

begin wxGlade: CmdFrameUI. init
kwds["style"] = wx.DEFAULT FRAME STYLE

wx.Frame. init (self, *args, **kwds)
self.sizer 8 staticbox = wx.StaticBox(self, -1, "LCVRC")
self.sizer 10 staticbox = wx.StaticBox(self, -1, "Camera")

Menu Bar

self.cmd frame menubar = wx.MenuBar ()

global OPEN FITS ID; OPEN FITS ID = wx.NewId()
global OPEN_RAW ID; OPEN RAW ID = wx.NewId()

wxglade tmp menu = wx.Menu ()
wxglade tmp menu.Append(OPEN FITS ID, "Open &FITS...", "",
wx .ITEM NORMAL)
wxglade tmp menu.Append (OPEN RAW ID, "Open é&raw data...", "",

wx .ITEM NORMAL)
wxglade tmp menu.AppendSeparator ()
wxglade tmp menu.Append(wx.ID EXIT, "E&xit", "", wx.ITEM NORMAL)

self.cmd frame menubar.Append(wxglade tmp menu, "&File")
wxglade tmp menu = wx.Menu ()

wxglade tmp menu.Append(wx.ID ABOUT, "About...", "", wx.ITEM NORMAL)
self.cmd frame menubar.Append(wxglade tmp menu, "&Help")
self.SetMenuBar (self.cmd frame menubar)

Menu Bar end

self.label 5 = wx.StaticText (self, -1, "SpaceWire:")

self.link choice = wx.Choice(self, -1, choices= "Link 1", "Link 2"])
self.dark checkbox = wx.CheckBox(self, -1, "Dark image")
self.label 7 = wx.StaticText(self, -1, "Exposure:")

self.exposure choice = wx.Choice(self, -1, choices= "5 s", "10 s"])
self.label 8 = wx.StaticText (self, -1, "Acquire")
self.num images spin ctrl = wx.SpinCtrl(self, -1, "3", min=1, max=100)
self.label 9 = wx.StaticText (self, -1, "images")

self.acquire button = wx.Button(self, -1, "&Acquire")

self.webcam button = wx.Button(self, -1, "Webcam mode")

self.label 1 = wx.StaticText (self, -1, "Port:")

self.port text ctrl = wx.TextCtrl(self, -1, "COM1")

self.label 4 = wx.StaticText (self, -1, "Temperature:")

self.temperature text ctrl = wx.TextCtrl(self, -1, u"0 °cn,
style=wx.TE READONLY |wx.NO BORDER)

self.label 2 = wx.StaticText (self, -1, "Target temp.:")

self.temperature spin ctrl = wx.SpinCtrl(self, -1, "20", min=0, max=40)

self.label 3 = wx.StaticText(self, -1, u"°cm")

self.label 11 = wx.StaticText(self, -1, "Voltage:")

self.voltage choice = wx.Choice(self, -1, choices=["2.45 v", "3.05 V",
"4.15 V", "9.996 V"])

self.set lcvrc button = wx.Button(self, -1, "&Set parameters")

self. set properties()
self. do layout()
end wxGlade

def set properties(self):
begin wxGlade: CmdFrameUI. set properties
self.SetTitle ("STOCC - ASCI")
self.link choice.SetSelection(0)
self.exposure choice.SetSelection(0)
self.voltage choice.SetSelection(0)
end wxGlade

def do layout(self):
begin wxGlade: CmdFrameUI. do layout
sizer 7 = wx.BoxSizer (wx.HORIZONTAL)
sizer 8 = wx.StaticBoxSizer (self.sizer 8 staticbox, wx.VERTICAL)
sizer 15 = wx.BoxSizer (wx.HORIZONTAL)
sizer 6 = wx.BoxSizer (wx.HORIZONTAL)
sizer 4 = wx.BoxSizer (wx.HORIZONTAL)
sizer 5 = wx.BoxSizer (wx.HORIZONTAL)
sizer 9 = wx.BoxSizer (wx.HORIZONTAL)
sizer 10 wx.StaticBoxSizer (self.sizer 10 staticbox, wx.VERTICAL)
sizer 14 = wx.BoxSizer (wx.HORIZONTAL)
sizer 13 = wx.BoxSizer (wx.HORIZONTAL)

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 24 of 29

STOCC - SCORE Control Software

sizer 12 = wx.BoxSizer (wx.HORIZONTAL)

sizer 11 = wx.BoxSizer (wx.HORIZONTAL)

sizer 11.Add(self.label 5, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL|
wx.ADJUST MINSIZE, 5)

sizer 11.Add(self.link choice, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 10.Add(sizer 11, 1, wx.EXPAND, 0)

sizer 10.Add(self.dark checkbox, 0, wx.BOTTOM|wx.ADJUST MINSIZE, 5)

sizer 12.Add(self.label 7, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL|
wx.ADJUST MINSIZE, 5)

sizer 12.Add(self.exposure choice, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 10.Add(sizer 12, 1, wx.EXPAND, 0)

sizer 13.Add(self.label 8, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL|
wx.ADJUST MINSIZE, 5)
sizer 13.Add(self.num images spin ctrl, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)
sizer 13.Add(self.label 9, 0, wx.LEFT|wx.ALIGN CENTER VERTICAL |
wx.ADJUST MINSIZE, 5)
sizer 10.Add(sizer 13, 1, wx.EXPAND, 0)
sizer 14.Add(self.acquire button, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL|
wx.ADJUST MINSIZE, 5)
sizer 14.Add(self.webcam button, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 10.Add(sizer 14, 1, wx.ALIGN CENTER HORIZONTAL, 0)

sizer 7.Add(sizer 10, 1, wx.ALL|wx.EXPAND, 5)

sizer 9.Add(self.label 1, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL |
wx.ADJUST MINSIZE, 5)

sizer 9.Add(self.port text ctrl, 0, wx.ADJUST MINSIZE, O0)

sizer 8.Add(sizer 9, 1, wx.BOTTOM|wx.EXPAND, 5)

sizer 5.Add(self.label 4, 0, wx.RIGHT|wx.TOP|wx.EXPAND|
wx.ALIGN CENTER VERTICAL|wx.ADJUST MINSIZE, 5)

sizer 5.Add(self.temperature text ctrl, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 8.Add(sizer 5, 1, wx.EXPAND, 0)

sizer 4.Add(self.label 2, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL |
wx.ADJUST MINSIZE, 5)

sizer 4.Add(self.temperature spin ctrl, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 4.Add(self.label 3, 0, wx.LEFT|wx.ALIGN CENTER VERTICAL]|
wx.ADJUST MINSIZE, 5)

sizer 8.Add(sizer 4, 1, wx.EXPAND, 0)

sizer 6.Add(self.label 11, 0, wx.RIGHT|wx.ALIGN CENTER VERTICAL|
wx.ADJUST MINSIZE, 5)

sizer 6.Add(self.voltage choice, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 8.Add(sizer 6, 1, wx.BOTTOM|wx.EXPAND, 5)

sizer 15.Add(self.set lcvrc button, 0, wx.ALIGN CENTER VERTICAL|
wx .ADJUST MINSIZE, O0)

sizer 8.Add(sizer 15, 1, wx.ALIGN CENTER HORIZONTAL |
wx .ALIGN CENTER VERTICAL, O0)

sizer 7.Add(sizer 8, 1, wx.ALL|wx.EXPAND, 5)

self.SetSizer (sizer 7)

sizer 7.Fit (self)

self.Layout ()

end wxGlade

end of class CmdFrameUI

class AboutDialogUI (wx.Dialog) :
def init (self, *args, **kwds):
begin wxGlade: AboutDialogUI. init
kwds["style"] = wx.DEFAULT DIALOG STYLE
wx.Dialog. init (self, *args, **kwds)
self.label 6 = wx.StaticText(self, -1, "ASCI version 0.52")
self.close button = wx.Button(self, -1, "&OK")

self. set properties()
self. do layout()

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 25 of 29

STOCC - SCORE Control Software

end wxGlade

def set properties(self):
begin wxGlade: AboutDialogUI. set properties
self.SetTitle ("About ASCI")
self.close button.SetFocus ()
self.close button.SetDefault ()
end wxGlade

def do layout (self):

begin wxGlade: AboutDialogUI. do layout

sizer 1 = wx.BoxSizer (wx.VERTICAL)

sizer 1.Add(self.label 6, 0, wx.ALL|wx.ALIGN CENTER HORIZONTAL |
wx .ADJUST MINSIZE, 10)

Sizeril.Add(self.closegbutton, 0, wx.BOTTOM | wx .ALIGN CENTER HORIZONTAL |
wx .ADJUST MINSIZE, 10)

self.SetSizer(sizer 1)

sizer 1.Fit (self)

self.Layout ()

end wxGlade

end of class AboutDialogUI

class ImageFrameUI (wx.Frame) :

def init (self, *args, **kwds):
begin wxGlade: ImageFrameUI. init
kwds["style"] = wx.DEFAULT FRAME STYLE
wx.Frame. init (self, *args, **kwds)

Menu Bar

self.frame 2 menubar = wx.MenuBar ()

global SAVE FITS ID; SAVE FITS ID = wx.NewId()

global SAVE PNG ID; SAVE PNG ID = wx.NewId()

global SAVE RAW ID; SAVE RAW ID = wx.NewId()

wxglade tmp menu = wx.Menu ()

wxglade tmp menu.Append(SAVE FITS ID, "Save as &FITS...", "",
wx .ITEM NORMAL)

wxglade tmp menu.Append(SAVE PNG ID, "Save as &PNG...", "",
wx .ITEM NORMAL)

wxglade tmp menu.Append (SAVE RAW ID, "Save &raw data...",
wx .ITEM NORMAL)

wxglade tmp menu.AppendSeparator ()

wxglade tmp menu.Append(wx.ID EXIT, "&Close window", "", wx.ITEM NORMAL)

self.frame 2 menubar.Append(wxglade tmp menu, "&Image'")

self.SetMenuBar (self.frame 2 menubar)

Menu Bar end

self.camera bitmap = wx.StaticBitmap (self, -1, wx.NullBitmap)

wn
’

self. set properties()
self. do layout()
end wxGlade

def set properties(self):
begin wxGlade: ImageFrameUI. set properties
self.SetTitle ("Camera image")
self.Hide ()
self.camera bitmap.SetMinSize((512, 513))
end wxGlade

def do layout (self):
begin wxGlade: ImageFrameUI. do layout
sizer 3 = wx.BoxSizer (wx.VERTICAL)
sizer 3.Add(self.camera bitmap, 0, wx.ADJUST MINSIZE, O0)
self.SetSizer (sizer 3)
sizer 3.Fit (self)
self.Layout ()
end wxGlade

end of class ImageFrameUI

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 26 of 29

STOCC - SCORE Control Software

if name == " main_ ":

app = wx.PySimpleApp (0)
wx.InitAllImageHandlers ()

cmd frame = CmdFrameUI (None, -1, "")
app.SetTopWindow (cmd frame)

cmd frame.Show ()

app.MainLoop ()

8.14.gui/lmageFrame.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
import os
import numpy
import pyfits
import wx
import gui
W, H = 512, 513
PACKET SIZE = W * H* 2 + 8 - 1
class ImageFrame (gui.ImageFrameUI) :
def init (self, *args, **kwargs):
super (ImageFrame, self). init (*args, **kwargs)

self.dirname = "'
self.bind events ()

def bind events(self):
File menu
#self.Bind (wx.EVT_CLOSE, self.on close)
self.Bind (wx.EVT MENU, self.on save fits, id=gui.SAVE FITS ID)
self.Bind (wx.EVT MENU, self.on save raw, id=gui.SAVE RAW ID)
self.Bind (wx.EVT MENU, self.on exit, id=wx.ID EXIT)

def on exit(self, event):
self.Close ()

def on save fits(self, event):
#print wx.FileDialog(self, wildcard='FITS files (*.fits) |*.fits',
style=wx.wxFD SAVE) .Path

dlg = wx.FileDialog(self, 'Save as FITS', self.dirname, '', 'FITS files
(* .fits) |*.fits', wx.SAVE)
if dlg.ShowModal () == wx.ID OK:

self.save_fits(dlg.GetPgth())
self.dirname = dlg.GetDirectory()
dlg.Destroy ()

def on save raw(self, event):
dlg = wx.FileDialog(self, 'Save raw data', self.dirname, '', 'Raw files
(*.bin) |* .bin', wx.SAVE)

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 27 of 29

STOCC - SCORE Control Software

if dlg.ShowModal () == wx.ID OK:
self.save raw(dlg.GetPath())
self.dirname = dlg.GetDirectory()

dlg.Destroy ()

v1d|uvd-080511-130059.raw

20080511

def load raw data(self, raw):
#print len (raw)

if len(raw) == 524295 and False:
raw += '\0' * (551015 - 524295) # FIXME!!!
if len(raw) == 551015:

raw = raw| :PACKET SIZE] # FIXME!!!
#print len (raw)
self.raw data = raw
self.camera bitmap.SetBitmap(self. raw data to bitmap(raw))

def save fits(self, filename):
s = self.raw datal 8:] + "\0'
a = 65535 - self.stringl6é to array32(s, W, H)
try:
os.remove (filename)
except OSError:

pass

fits = pyfits.PrimaryHDU (a)

header = fits.header
#4# header.update ('DARK', dark)
#4# header.update ('EXPTIME', exp time, 's')
#4# header.update ('LCVRTEMP', 25, 'degrees Celsius')
#4# header.update ('LCVRVOLT', lcvr voltage, 'mV')
header.update ('PREPOLAR', prepolarization, 'deg')

#header.update('', , '")
fits.writeto(filename)

def save raw(self, filename):
f = open(filename, 'wb')
f.write(self.raw data)
f.close ()

def stringl6 to array32(self, s, w, h):
a = numpy.fromstring(s, numpy.uintl6)
a.shape = w, h
return numpy.array (numpy.transpose(a), numpy.int32)

def raw data to bitmap (self, raw):

assert len(raw) == PACKET SIZE

raw = rawl 8:] + '\O0' # remove header and fix data size
a = numpy.fromstring(raw, dtype=numpy.uintl6)

a.shape = W, H

a = 65535 - a.transpose()[::-1] .reshape(W * H)

a //= 257 # 65535 -> 255

a = numpy.array(a, dtype=numpy.uint8)

im = numpy.array(a, a, al).transpose() # convert to RGB

im = wx.ImageFromData (W, H, im.tostring())

return wx.BitmapFromImage (im)

#return wx.BitmapFromBuffer (w, h, im.tostring()) # FIXME: wxPy 2.8227?

8.15.Icvrc/score_lcvre.py

Copyright (C) 2008 Osservatorio Astronomico di Torino
Copyright (C) 2008 Lino Mastrodomenico
Copyright (C) 2006, 2007 Politecnico di Torino

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

S oS e o 3 o e 3 o S

This program is distributed in the hope that it will be useful,

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 28 of 29

STOCC - SCORE Control Software

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

from future import division

import serial

if False:
prototype board
vp min = -0.001
vp max = 10
vm max = -0.004
vm_min = -10.007
else:
flight model
vp min = -0.001
vp max = 9.996
vm max = -0.001
vm min = -9.998
v min = 0.01
v_max = min(vp max, -vm _min)

def interpolate(x, x1, x2, vyl, vy2):
float linear interpolation
y = ((x - x1) * (y2 - yl)) / (x2 - x1) + yl
return int (round(y))

def encode data(t, vO0, vl, v2, v3, texp):
t = int (round(t * 10))

voltages = v0, vl, v2, v3

voltages = [max(v_min, min(v_max, n)) for n in voltages]

v = [interpolate(n, vp min, vp max, 0, 4095) for n in voltages]

v += [interpolate(n, -vm min, -vm max, 0, 4095) for n in voltages]

assert min(v) >= 0, v
assert max(v) < 4096, v
values = [t]
for n in v:
values.append(n % 256)
values.append(n // 256)
texp = 65535 - texp * 2000
values.append(texp % 256)
values.append (texp // 256)
return ('$00:%d' + ',%d' * 18 + '"\r') % tuple(values)

def set parameters (port, temperature, voltage):

ser = serial.Serial (port, 9600, timeout=2)
ser.flushInput ()
ser.readline() # discard a possibly incomplete line
line = ser.readline()
assert line != "'
try:
actual temperature = int(line) / 10
except:

0

actual temperature
v = voltage
#print encode data (temperature, v, v, v, v, 3)
ser.write (encode data(temperature, v, v, v, v, 3))
ser.close ()
return actual temperature

Rev. 32 2008-06-20 STOCC - SCORE Control Software Page 29 of 29

