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1 Abstract

The BAM (Basic Angle Monitoring) device is an interferometer dedicated to

the measurement of the basic angle (hereafter, BA), i.e. the angle between the

lines of sight of the two GAIA telescopes. Laser beams are projected towards

each mirror; the beams are then splitted and forced to interfere separately

onto two separate portions of a CCD. The BA is function of the differential of

the maximum (ZOPD, zero Optical Path Difference) of the two interferogram

w.r.t. their nominal position.

In this technical note, we first recall the interferometric model on which the

analysis relies. This model depends on several parameters, both instrumental

and observational. We then describe the algorithms for the estimation of the

model parameters and of the ZOPD for an interferometric signal. We choose

among different estimators for the performance of the fitting algorithms, and

we finally test them with simulated interferometric images, under different

noise conditions.

2 Introduction

The BAM Calibration set of algorithms is aimed at the estimation of the value

of the most important parameters needed for the modeling of the image shape.

The monochromatic bi-dimensional image model for each aperture is given by:

I(x′, y′) = A(D, f, λ, x′, y′) ·
{

1 + V cos

[
2π

B

λ · f x′ + φ

]}
+ bg (1)

where A is the envelope shape, D is the aperture diameter ([mm]), f is the

focal length ([mm]), λ is the working wavelength ([mm]), x′ e y′ are the image

coordinates ([mm]), V is the visibility (being function of the wavelength, we

consider it as a constant), φ is the fringe phase ([rad]), inside the envelope, bg

is the background noise. The image coordinates contain the displacement of

the image w.r.t. the nominal position (x0, y0):

x′ = x− x0 + ∆xBAV

y′ = y − y0

where ∆xBAV is linked to the variation of the Basic Angle (BA) between the

two telescopes, as seen by the aperture.

The algorithms set, described in section 5, gives an estimate of the following

parameters:
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• the envelope parameters, namely the intensity A, the amplitude σ, the

phase φ and the background level bg

• the Visibility

• the fringe period

3 Data model and nominal configuration

We now give a description of the model used for data simulation and of the

nominal configuration of the involved parameters.

The envelope shape of Eq. 1 can be modeled in different ways; we initially

choose a circular gaussian envelope:

A = a exp

(
− r′2

2σ2

)
(2)

where r′ =
√

x′2 + y′2 moves in the circle of radius σ.

This envelope is centered in the point µ′ = (x′0, y0), with x′ = x0 −∆xBAV .

I(x, y) = a exp

(
− r′2

2σ2

)
·
{

1 + V cos

[
2π

B

λ · f x′ + φ

]}
+ bg (3)

The actual size of the image is 60 samples (along direction) per 360 samples

(across direction). The units are not the same along the two directions. The

pixel size is 10 µm (across) and 30 µm (along). The across unit corresponds

to 1 pixel (10 µm), while the along unit corresponds to 2 pixels (60 µm). The

resulting image is squared, but the samples are not equally distributed. This

means, in particular, that the samples on the along direction, say y, are binned

on chip.

4 Quality estimators

Since all tests are repeated over a number of images, say N , the results are

summarized thanks to several estimators, described in this section. For every

parameter x to be estimated, we call x̂i the estimation over the i-th image

of the value µi of the parameter. We will analyse the case 1) where µi = µ

does not vary over the images and 2) µi follows an assigned distribution with
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expectation E(µi) = µ and variance V ar(µi) = σ2
µ. Moreover, we call ŝi the

estimation over the i-th image of the standard deviation σx̂ of x̂.

With simulated data, µi is in general known, while σx̂ is not. With real data

both µi and σx̂ are not known. Therefore we will define either estimators that

are function of µi and σx̂ or estimators that rather use ŝi and an estimation

of µi instead. We give here a list of the estimators we consider useful for our

analysis:

• Sample Mean (SM):

x̄ =
1

N

N∑
i=1

x̂i

• Sample Standard Deviation (SSD):

s̄s =

√√√√ 1

N − 1

N∑
i=1

(x̂i − x̄)2

• Average Error (AVE):

ε̄ =
1

N

N∑
i=1

(x̂i − µi)

• Standard Deviation (STD):

s̄ =

√√√√ 1

N

N∑
i=1

(x̂i − µi)2

• true Normalized Average Error (tNAE):

ε̄t =
1

N

N∑
i=1

x̂i − µi

σx̂

• true Normalized Standard Deviation (tNSD):

ς̄t =

√√√√ 1

N

N∑
i=1

(x̂i − µi)2

σ2
x̂
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Now, given that σx̂ is usually not known, tNAE and tNSD cannot be com-

puted. We will rather use the estimated value ŝi and define four more estima-

tors:

• Normalized Average Error (NAE):

ε̄ =
1

N − 1

N∑
i=1

x̂i − µi

ŝi

• Normalized Standard Deviation (NSD):

ς̄ =

√√√√ 1

N − 1

N∑
i=1

(x̂i − µi)2

ŝ2
i

• sample Normalized Average Error (sNAE):

ε̄s =
1

N − 1

N∑
i=1

x̂i − x̄

ŝi

• sample Normalized Standard Deviation (sNSD):

ς̄s =

√√√√ 1

N − 1

N∑
i=1

(x̂i − x̄)2

ŝ2
i

We list in the following the properties of each estimator for a general pa-

rameter x.

4.1 Properties of the quality estimators

First of all, we consider the estimation x̂i of the parameter x from the i-th

image. We make the basic assumption for x̂i of being independent, identically

distributed, and with finite expectation and variance. Moreover, we consider

a possible bias caused by the estimation algorithm:

xi = µi + b̂i
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where b̂i is the estimate of the bias associated to the i-th image. Assuming

that the bias is such that it follows a statistical distribution with expectation

E[b̂i] = b and variance var(b̂i) = σ2
b , we have:

E[xi] = E[µi] + E[b̂i] = µ + b (4)

σ2
x̂ = E[(x̂i − E[x̂i])

2] = E[(µi + b̂i − µ− b)2] =

= E[(µi − µ)2 + (b̂i − b)2 + 2(µi − µ)(b̂i − b)] = σ2
µ + σ2

b + 2σµ b

As we can expect, the variance of the estimation is a combination of the statis-

tical moments of the parameter’s distribution and of the estimating features.

We now analyze in details the properties of most of the estimators define in

the previous section.

• Sample Mean:

x̄ =
1

N

N∑
i=1

x̂i =
1

N

N∑
i=1

(x̂i − µi + µi) =
1

N

N∑
i=1

(b̂i + µi)

The expectation of the Sample Mean is given by:

µx̄ ≡ E(x̄) =
1

N

N∑
i=1

[E(b̂i) + E(µi)] =
1

N

N∑
i=1

(b + µ) = b + µ (5)

Thanks to our assumption on the distribution of the estimates x̂i, then

the Sample Mean is asymptotically normally distributed with E(x̄) = µx̄

and variance σ2
x̄ given by

σ2
x̄ =

σ2
x̂

N
(6)

This information could be used for the estimation of a confidence interval

for µx̄, with confidence level 1 − α. Since in practice σ2
x̂ is not known,

and we only have its estimates ŝ2
s, we consider the following confidence

interval:

µx̄ ∈
(

x̄− tα/2,N−1
s̄s√
N

, x̄ + tα/2,N−1
s̄s√
N

)
(7)

where tα/2,N−1 is the quantile of the Student t distribution with α/2, N−1

parameters.
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• Average error:

ε̄ =
1

N

N∑
i=1

(x̂i − µi)

The expectation µε̄ of the Average Error is:

E(ε̄) ≡ µε̄ =
1

N

N∑
i=1

E(b̂i) = b

as the contribution of the true values is cancelled out. The variance σ2
ε̄

is given by:

σ2
ε̄ = var

(
1

N

N∑
i=1

(b̂i)

)
=

1

N2

N∑
i=1

var(b̂i) =
σ2

b

N

thanks to the assumption of independence for the estimates x̂i. Moreover,

since we assume that x̂i are also equally distributed, the Average Error

is asymptotically normally distributed with E(ε̄) = µε̄ and variance σ2
ε̄ .

From eq. 8 we obtain that σ2
b = Nσ2

ε̄ .

If the bias contribution can be neglected, than µε̄ ∼ 0.

The Sample Mean and the Average Error provide basically the same

information. However the Average Error can be used only with simulated

data, where µi is known. We give also a different formulation for σ2
ε̄ :

σ2
ε̄ =

1

N2

N∑
i=1

var(x̂i − µi) =
1

N2

N∑
i=1

[var(x̂i) + var(µi)− 2σx̂ µ] =

=
σ2

x̂ + σ2
µ − 2σx̂ µ

N
(8)

• Standard Deviation:

s̄ =

√√√√ 1

N

N∑
i=1

(x̂i − µi)2

Using the squared Standard Deviation and recalling previous definitions

we can write:

s̄2 =
1

N

N∑
i=1

(x̂i − µi)
2 =

1

N

N∑
i=1

b̂2
i
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The expected value of the squared Standard Deviation is then

E(s̄2) =
1

N

N∑
i=1

E(b̂2
i ) =

1

N

N∑
i=1

[σ2
b + E2(b̂i)] = σ2

b + b2

or also, taking into account that E(x̂i) = µi + bi,

E(s̄2) = E

[
1

N

N∑
i=1

(x̂i − µi)
2

]
=

1

N

N∑
i=1

E[(x̂i − µi)
2] =

=
1

N

N∑
i=1

E[(x̂i−µ−b−µi+µ+b)2] =
1

N

N∑
i=1

E[{(x̂i−µ−b)−(µi−µ)+b}2] =

=
1

N

N∑
i=1

{E[(x̂i−µ−b)2]+E[(µi−µ)2]+E[b2]−2E[(x̂i−µ−b)(µi−µ)]+

+2E[b(x̂i − µ− b)]− 2E[b(µi − µ)]} =

=
1

N

N∑
i=1

{σ2
x̂ + σ2

µ + b2 − 2σx̂ µ + 2bE[(x̂i − µ− b)]− 2bE[(µi − µ)]}

where the two last factors are null since the expectations go to zero. We

finally obtain:

E(s̄2) = σ2
x̂ + σ2

µ + b2 − 2σx̂ µ = b2 + Nσ2
ε̄

having used Eq. 8.

We can define a confidence interval for s̄2, considering that, under the

condition that x̂ is normally distributed, with mean µx̂ and variance σ2
x̂,

then N s̄2

σ2
x̂
∼ χ2

N , where χ2
N has a Chi-square distribution with parameter

N . For N sufficiently large, the χ2
N distribution can be approximated by

a gaussian, with mean N and variance 2N .

In practice, since we do not know σx̂, we shall use the estimates ŝ2
i instead,

assuming that we can neglect the contribution of the bias.

• Sample Standard Deviation:

s̄s =

√√√√ 1

N − 1

N∑
i=1

(x̂i − x̄)2



4.1 Properties of the quality estimators 10

When the true values µi are not known, the Sample Standard Devia-

tion can be used instead of the Standard Deviation. Remembering our

assumptions on x̂i, its expectation is given by:

E[s̄2
s] =

1

N − 1

N∑
i=1

E[(x̂i − x̄)2] = (9)

=
1

N − 1

N∑
i=1

E[(x̂i − x̄ + µ + b− µ− b)2] =

=
1

N − 1

N∑
i=1

E[{(x̂i − E[x̂i])− (x̄− E[x̄])}2] =

=
1

N − 1

N∑
i=1

{σ2
x̂ + σ2

x̄ − 2E[(x̂i − E[x̂i])(x̄− E[x̄])]}

To evaluate the last factor, we remember that x̄ =
∑N

j=1 x̂j

N
, and E[x̄] =∑N

j=1 E[x̂j ]

N
, and we obtain:

E[(x̂i − E[x̂i])(x̄− E[x̄])] = E[(x̂i − E[x̂i])(
1

N

N∑
j=1

(x̂j − E[x̂j]))] =

= E[
1

N

N∑
j=1

(x̂i − E[x̂i])(x̂j − E[x̂j])] =

=
1

N
{E[(x̂i − E[x̂i])

2] + 2
N∑

j=1,j 6=i

cov(x̂i, x̂j)} =
σ2

x̂

N
(10)

since we have assumed the independence of estimates. Substituting in

Eq. 9, remembering that σ2
x̄ =

σ2
x̂

N
, we obtain:

E[s̄2
s] =

1

N − 1

N∑
i=1

{σ2
x̂ +

σ2
x̂

N
− 2

σ2
x̂

N
} = σ2

x̂ (11)

that is, s̄s is a correct estimator of σ2
x̂.

• true Normalized Average Error:

ε̄t =
1

N

N∑
i=1

x̂i − µi

σx̂

=
1

N

N∑
i=1

x̂∗i
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Assuming zero bias, x̂∗i is a standardized random variable, and so we

expect the tNAE to have zero mean.

In case of non-zero bias bi for each image, given that in this case the

variance σx̂ is supposed known, the expected value of the tNAE is given

by:

µε̄t = E

(
1

N

N∑
i=1

x̂i − µi

σx̂

)
=

1

N

N∑
i=1

E[b̂i]

σx̂

=
b

σx̂

Under the same assumptions, the variance of the tNAE is:

σ2
ε̄t

= var

(
1

N

N∑
i=1

x̂i − µi

σx̂

)
=

1

N

N∑
i=1

var(x̂i − µi)

σx̂

=
Nσ2

b

N2σx̂

=

=
σ2

b

Nσx̂

=
1

N

σ2
b

σ2
µ + σ2

b + 2σµ b

If N →∞, then var(ε̄t) goes to zero.

For the assumption on x̂i, the tNAE has an asymptotic normal distribu-

tion with mean and variance estimated as above. We can then construct

a confidence interval, providing the same information of the Average Er-

ror. However, since σ2
x̂ is not known, the Normalized Average Error will

be used in practice instead.

• true Normalized Standard Deviation:

ς̄t =

√√√√ 1

N

N∑
i=1

(x̂i − µi)2

σ2
x̂

As for the Standard Deviation, assuming that the bias can be consid-

ered negligible, the quantity N · tNSD2 has a χ2
N distribution, and for

large N we can approximate it with a normal distribution with mean N

and variance 2N . We can use this information to construct a confidence

interval. Again, when σ2
x̂ is not known, the Normalized Standard Devi-

ation can be used instead. The information should be equivalent to the

one provided by the Standard Deviation.

• Normalized Average Error:

ε̄ =
1

N − 1

N∑
i=1

x̂i − µi

ŝi
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Since ε̄ is the ratio of two random variables, its properties can be derived

at least at first order, but this is out of the scope of this work. So we

use a stronger assumption, approximating ŝi with σx̂. The properties are

therefore the same as ε̄t.

• Normalized Standard Deviation:

ς̄ =

√√√√ 1

N − 1

N∑
i=1

(x̂i − µi)2

ŝ2
i

As for ε̄, we approximate ŝi with σx̂.

• sample Normalized Average Error:

ε̄s =
1

N − 1

N∑
i=1

x̂i − x̄

ŝi

If we assume ŝi = σx̂ to be known, we can derive the properties of the

following estimator:

ε̄∗s =
1

N − 1

N∑
i=1

x̂i − x̄

σŝ

that we can call sNAE*.

µε̄∗s = E

(
1

N − 1

N∑
i=1

x̂i − x̄

σx̂

)
=

1

N

1

σx̂

N∑
i=1

E[(x̂i − x̄)] = 0

since x̂i = x̄.

The variance of the sNAE* is:

σ2
ε̄∗s = var

(
1

N − 1

N∑
i=1

x̂i − x̄

σx̂

)
=

1

(N − 1)2

1

σ2
x̂

N∑
i=1

var(x̂i − x̄) =

=
1

(N − 1)2

1

σ2
x̂

N∑
i=1

E[(x̂i − x̄)2]

From Eq. 11 we can write E[(x̂i − x̄)2] = N−1
N

σ2
x̂, and substituting we

obtain:

σ2
ε̄∗s =

1

(N − 1)2

1

σ2
x̂

N∑
i=1

N − 1

N
σx̂ =

1

(N − 1)2

1

σ2
x̂

N
N − 1

N
σ2

x̂ =
1

N − 1
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which tends to zero as N →∞. Thanks to the assumption on x̂i, sNAE*

is asymptotically normally distributed with mean µε̄∗s and variance σ2
ε̄∗s .

This is the only information we have for evaluating a confidence interval

for sNAE.

• sample Normalized Standard Deviation:

ς̄s =

√√√√ 1

N − 1

N∑
i=1

(x̂i − x̄)2

ŝ2
i

As before, we can assume ŝi = σx̂ to be known, and derive the properties

of the following estimator:

ς̄∗s =
1

N − 1

N∑
i=1

(x̂i − x̄)2

σ2
ŝ

that we can call sNSD*.

The mean of this estimator is:

E(ς̄∗s ) =
1

N − 1

N∑
i=1

E[(x̂i − x̄)2]

σ2
ŝ

=
1

N − 1

1

σ2
ŝ

N∑
i=1

E[(x̂i − x̄)2] =

=
1

N − 1

1

σ2
ŝ

N∑
i=1

N − 1

N
σ2

x̂ = 1

The variance involves the fourth moments.

4.2 Application to specific cases

4.2.1 Noise free images with fixed parameter

In this case µi = µ, ∀i. Since there is no variability, we expect to be dominated

by the bias effects.

The parameter are fixed and the images are noiseless, so the estimates x̂i are

equal for all i. Their definitions simplify: x̂i = µ + b̂, since the bias should

be constant for the lack of variability over each image (a part from numerical

approximations). So the moments of the distribution of x̂i become:

E[x̂i] = µ + b

σ2
x̂ = σ2

µ + σ2
b + 2σµ b = 0

The estimators description is simplified as follows:
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• Sample Mean:

x̄ = µ + b̂

Since the estimates x̂i are equal for all i, also b̂ is constant for all images,

and we obtain:

E(x̄) = µ + E(b̂) = µ + b

where b = E[b̂] = b̂. The variance σ2
x̄ is of course 0.

• Average error:

ε̄ = x̄− µ = b̂

Since ε̄ is the same for each image:

E(ε̄) = E(b̂) = b (12)

Therefore the Average Error provides an estimate of the bias.

• Standard Deviation:

s̄ =

√√√√ 1

N

N∑
i=1

(x̂i − µ)2

In this particular case, s̄ = |ε̄|, so Standard Deviation does not add

information.

• Sample standard deviation:

s̄s =

√√√√ 1

N − 1

N∑
i=1

(x̂i − x̄N)2 = 0

Since the N images are noiseless, all x̂i = x̂ are equal to x̄, so s̄s is zero.

The bias is canceled out by the subtraction.

• Normalized Average Error:

ε̄ =
1

N

N∑
i=1

x̂− µ

ŝi

Again in this case we have x̂i = x̂, µi = µ, ∀i. We can also assume that

the only contribution to the error associated to the parameter estimation
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comes from the estimation process itself. Under this hypothesis, ŝi = ŝ,

∀i:
ε̄ =

1

N

N∑
i=1

x̂− µ

ŝ
∼ b̂

ŝ

and we obtain an indication of the relative weight of the bias b with

respect to the error associated to the parameter estimation algorithm

σx̂.

• Normalized Standard Deviation:

ς̄ =

√√√√ 1

N

N∑
i=1

(x̂− µ)2

ŝ2
∼ |b̂|
|ŝ| = |ε̄|

As for the Standard Deviation, the NSD does not add further informa-

tion.

• sNAE and sNSD: they are identically zero because the bias contribution

is cancelled out

4.2.2 Noise free images with varying parameter

The parameter is allowed to vary around a certain value with a known variance,

following a known distribution (true parameter values: µi, with E(µi) = µ,

var(µi) = σ2
µ, for i = 1, . . . , N). Given that the images are noiseless, we

expect to be dominated by the statistics of the estimator rather than by the

statistic of the parameter. This means that we expect ŝi to vary around a

mean value which value depends upon the distribution of the parameter, with

a distribution which is not easily derived as it is dominated by the parameter

estimator properties. And we expect to be again dominated by the bias effect.

• Sample Mean:

E(x̄) =
1

N

N∑
i=1

E(µi) +
1

N

N∑
i=1

E(b̂i) = µ +
1

N

N∑
i=1

bi

• Average error:

ε̄ =
1

N

N∑
i=1

bi

It can be considered as an estimate of the mean bias, assumed different

for different values of the parameter to be estimated.
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• Standard Deviation:

s̄ =

√√√√ 1

N

N∑
i=1

b̂2
i

Since we are dominated by the bias, the Standard Deviation is not a

good estimation of σx̂.

• Normalized Average Error:

ε̄ =
1

N

N∑
i=1

x̂i − µi

ŝi

The situation is similar to the case of fixed parameters. We have now

ε̄ =
1

N

N∑
i=1

b̂i

ŝi

that gives us an indication of the mean relative weight of the bias b̂i with

respect to the error associated to the parameter estimation algorithm ŝi.

• Normalized Standard Deviation:

ς̄ =

√√√√ 1

N

N∑
i=1

(x̂i − µi)2

ŝ2
i

The situation is again similar to the case of fixed parameters. We have

here

ς̄ =

√√√√ 1

N

N∑
i=1

b̂2
i

ŝ2
i

in this case however NSD is no longer simply the absolute value of NAE.

• sNAE and sNSD: bias do not cancel out anymore.

4.2.3 Noisy images

We are here in presence of a noisy process, which is simulated as usual, i.e.

a poisson distribution with σ2
ph = µph for each image sample. However, the

dependence of σx̂ vs. the poisson variance σ2
ph is not easily derived. Again

ŝi varies over the images, the distribution being this time dominated by the
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poisson noise. Therefore in this case the definition of confidence intervals are

useful to verify: 1) that we can neglect the bias introduced by the estimation

process and 2) that our hypothesis of asymptotic normal distributions, when-

ever made, cannot be rejected by the results. We will assume and verify if

NAE follows a normal distribution with (µ, σ2) = (0, N−1) and NSD2 follows

a normal distribution with (µ, σ2) = (1, 2 ·N−1) at a given level of confidence.

4.3 Criteria

In this subsection, we use the discussion made in 4.2 to derive general criteria

for evaluation of the algorithm performances. They are summarized in Table

1.

Definitions:

• Qb is the maximum allowed relative bias level. For the purpose of this

document, we set initially Qb = 1.0 · 10−4

• nσ is the level of confidence required. In our simulations we require

nσ = 3 which means 3-σ level of confidence.

• N is the number of images used for a given test. In our case, N = 1000

for all test involving noise.

Noise free images - fixed parameters

AV E = b̂ < Qb · µ if µ 6= 0

AV E = b̂ < Qb if µ = 0

Noisy images

NAE ∼ Gauss
(
0, 1

N

)
=⇒ |NAE| < nσ ·

√
1
N
∼ 0.095

NSD2 ∼ χ2

N
∼ Gauss

(
1, 2

N

)
=⇒ |NSD2 − 1| < nσ ·

√
2
N
∼ 0.134

Table 1: Criteria
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5 Algorithm description

In this section we describe the algorithms used for the determination of pa-

rameters.

5.1 Envelope shape

Given the 2D image, if we integrate it in the along scan direction, we can have

direct access to the envelope shape. From Eq. (1), integrating along the x

variable, we obtain:

S(y′) =

∫

x

I(x′, y′)dx′ =

=

∫ x2

x1

(a exp

(
−x′2 + y′2

2σ2

)
·
{

1 + V cos

[
2π

B

λ · f x′ + φ

]}
+ bg)dx′ =

= a exp

(
− y′2

2σ2

) ∫ x2

x1

exp

(
− x′2

2σ2

)
dx′ +

+ aV exp

(
− y′2

2σ2

) ∫ x2

x1

exp

(
− x′2

2σ2

)
· cos

[
2π

B

λ · f x′ + φ

]
dx′ +

+

∫ x2

x1

bg dx′ = a exp

(
− y′2

2σ2

)
(H + V K) + ∆x′ bg (13)

with H =
∫ x2

x1
exp

(
− x′2

2σ2

)
dx′, K =

∫ x2

x1
exp

(
− x′2

2σ2

)
· cos

[
2π B

λ·f x′ + φ
]
dx′, and

∆x′ = x2 − x1.

Using the last equality of Eq. (13), we can model the envelope shape by

means of an exponential function with four parameters (A, µ, S and D):

F (y) = A exp

(
−(y − µ)2

2S2

)
+ D (14)

where A and D are linked to a and bg thanks to the following relations:

a = A/(H + V K) (15)

bg = D/∆x′ (16)

while µ and S give respectively the mean displacement of the envelope along

the y coordinate and the width of the envelope.
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If the integration interval contains a complete number of fringes, the modu-

lated integral K vanishes, and Eq. 15 reduces to a = A/H. If this is not

the case, K introduces a perturbation strictly related to the sampling of the

fringes. This may lead in problems in determining the value of the envelope

original amplitude.

In our simulations, the integration interval [x1, x2] is the samples space with

60 points. The integration in the along scan direction is done summing up the

360 interferograms.

The estimation of the parameters is done by two means:

• a Maximum Likelihood (ML) approach we implemented in IDL for the

purpose of this document;

• the IDL Curvefit function, which performs a non-linear least squares fit,

to provide a cross-check of the results using IDL built-in functions. The

description of the Curvefit algorithm can be found at the following link:

http://www.ittvis.com/portals/0/pdfs/idl/refguide.pdf

Curvefit requires at input the setting of weights; we choose unitary

weights.

5.2 Fringe shape

As in the previous section, we start again from the 2D image, but now we

integrate in the across scan direction. In this way, we obtain an integrated

interferogram. From Eq. 1, integrating along the y variable, we obtain:

F (x′) =

∫

y

I(x′, y′)dy′ =

= a exp

(
− x′2

2σ2
x

) ∫ y2

y1

exp

(
− y′2

2σ2
y

)
dy′ +

+ aV exp

(
− x′2

2σ2
x

)
cos

[
2π

B

λ · f x′ + φ

] ∫ y2

y1

exp

(
− y′2

2σ2
y

)
dy′ +

+

∫ y2

y1

bg dy′ = A∗ exp

(
− x′2

2σ2
x

){
1 + V cos

[
2π

B

λ · f x′ + φ

]}
+ B∗

where A∗ = a
∫ y2

y1
exp

(
− y′2

2σ2

)
dy′ and B∗ = ∆y · bg. Since x′ = x− x′0, we can
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write the last equality as:

F (x) = A∗ exp

(
−(x− x′0)

2

2σ2
x

){
1 + V cos

[
2π

B

λ · f (x− x′0) + φ

]}
+ B∗ (17)

Starting from this equation, we would like to estimate the following parameters:

• A∗: the integrated intensity

• x′0: the difference between the actual and the nominal zero OPD position

• σ2
x: the amplitude of the envelope in the across scan direction

• V : the fringe visibility

• φ: the phase shift between the envelope peak and the white fringe

In our simulations, the integration interval [y1, y2] is the 360-pixels space. The

integration on the across direction is done summing along the samples direc-

tion.

As in previous section, parameter estimation is done with both Curvefit and

Maximum Likelihood.

5.3 Fringe period

We estimate the period of the fringe by Fourier transforming the signal in the

Along scan direction where the information is stored. This can be done both

on the 2D fringe pattern (Eq. 1) and on the same signal integrated in the

Across scan direction (Eq. 17). In the first case we obtain Nr independent

estimation of the fringe period, where Nr is the number of AC samples. In

the latter case, we have one single estimation, which takes directly advantage

from the improved signal to noise ratio.

Another available option is to use a densified image. The algorithm we devel-

oped can be set to add zero value samples at the AL borders of the window;

the number of added samples can be any integer number of the AL window

size, up to a maximum value currently set at 9. We call this the densification

factor df . The result of densifying the image by a factor df is a correspondent

densification in the Fourier space, decreasing the sampling resolution by the

same factor and therefore adding useful information in the Fourier transform

function. The price we have to pay is of course an increased computational
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load and a different energy distribution. An alternative approach would be

to directly compute the discrete Fourier transform for an arbitrary number of

value of the Fourier independent variable; this is currently not implemented in

our simulations.

The steps for Fringe period estimation are the following:

• generate the densified image (only if df > 1)

• compute the Fast Fourier Transform on either the 1D or 2D fringe pat-

tern;

• fit the FFT result to a suitable analytical model

• derive estimates of the fringe period and associated standard error from

fit results.

The analytical model used to fit the Fourier transform in our simulations

is currently a simple gaussian profile.

In our simulations we perform four different estimates of the fringe period,

combining the 1D/2D option with the densified/non-densified image (with

respectively df = 1 and df = 9).

5.4 Nominal and non-nominal values

We recall the 2-dimensional image formula:

I(x′, y′) = a exp

[
−

(
x′ 2

2σ2
x

+
y′ 2

2σ2
y

)]
·
{

1 + V cos

[
2π

B

λ · f x′ + φ

]}
+ bg (18)

with x′ = x−x′0 = x− (x0 +∆xBAV ) and y′ = y−y′0. Table 2 lists the nominal

value of all parameters involved, with the indication of the algorithm estimat-

ing them. Tables 3 and 4 list the values used when non-nominal configurations

are used.

6 Tests

6.1 Tests description

In this section we describe the tests performed. The first are useful to check

the limits of the algorithms from the computational point of view, giving an
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par nominal value units Algorithm

A 9e4 [el] not estimated

σx 1.5 [mm] Fringe Shape

σy 1.5 [mm] Envelope Shape

x′0 0 [mm] Fringe Shape

y′0 0 [mm] Envelope Shape

V 1 Fringe Shape

φ 0 [rad] Fringe Phase

bg 1e4 [el] Envelope Shape

FP 0.0497 [mm] Fringe Period

λ 852e-6 [mm] not estimated

f 35e3 [mm] not estimated

B 600 [mm] not estimated

Table 2: Nominal values for image parameters.

estimate of the parameters variance due to numerical limits. We then assign

a variability to one or more parameters, in order to identify the parameter

variance due to its intrinsic perturbation. Finally, we let vary all parameters

all together, to see the overall error associated to the estimate.

00: This test is focused on the envelope shape only. The model is a simplified

1-dimensional one:

I(x) = A exp

(
−(x− µ)2

2S2

)
+ D

Parameters A, µ, D are at their nominal values, while S varies in the

interval [6,35] samples, corresponding to [0.36,2.1] mm (nominal value,

S=25 samples, that is, 1.5 mm). This test is aimed in particular to

the estimation of the background D. If S is small, the envelope bell is

smaller, and it is easier to estimate the background. Table 5 shows the

nominal values of the envelope parameters for this particular test case.

The algorithm is based on the IDL curvefit function.

0: this test should verify the perturbation on parameters’ estimation intro-

duced by a non integer number of fringes. It is based on the model of

Eq. 18, and the fitting algorithms use the IDL Curvefit function.

0a: S varies in the interval [0.2,2.4] mm. The other parameters are set

at their nominal values.
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par nominal value units Algorithm

A 9e4 [el] not estimated

σx 1.500024438 [mm] Fringe Shape

σy 1.500024438 [mm] Envelope Shape

x′0 0 [mm] Fringe Shape

y′0 1.44219985e-2 [mm] Envelope Shape

V 0.81020838 Fringe Shape

φ 7.60197499e-3 [rad] Fringe Phase

bg 1.000052148 [el] Envelope Shape

FP 0.049700599 [mm] Fringe Period

λ 852e-6 [mm] not estimated

f 35e3 [mm] not estimated

B 600 [mm] not estimated

Table 3: non-nominal values (fixed) for image parameters.

0b: S varies in the interval [0.2,2.4] mm. The other parameters are not

nominal, but fixed such that the fringe period contains an integer

number of pixel, and the entire scan contains an integer number

of fringes. In particular, λ = 800 nm, F = 50 m and B = 500

mm, instead of 850 nm, 35 m and 600 mm, respectively. The fringe

period, defined as f = λF/B, is equal to 80µm instead of 49.7µm.

Since the pixel is 10µm wide, the fringe period spans 8 pixels; since

interferograms span 360µm, each of them contains exactly 4 fringes.

01: generation of 100 images, with all parameters set at their nominal values;

images are not noisy (RON, but not photon noise). This test is looking

for variability caused only by computational problems, that should be

avoided. It is based on model of Eq. 18, and the fitting algorithms use

both the IDL Curvefit function and the ML approach.

1: generation of 1000 images, with all parameters set at their nominal val-

ues; images are noisy (photon noise and RON). This test is aimed at giv-

ing an estimate of the variability associated at each parameter, caused

by noise on image. This is a lower limit under which intrinsec variability

of parameters is not retrievable because of noise on data. It is based on

model of Eq. 18, and the fitting algorithms use both the IDL Curvefit

function and the ML approach.
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par nominal value sigma units Algorithm

A 9e4 9 [el] not estimated

σx 1.500024438 1.5e-5 [mm] Fringe Shape

σy 1.500024438 1.5e-5 [mm] Envelope Shape

x′0 -2.92e-5 5e-3 [mm] Fringe Shape

y′0 1.44219985e-2 1.5e-2 [mm] Envelope Shape

V 0.81020838 0.1 Fringe Shape

φ 7.60197499e-3 0.1 [rad] Fringe Phase

bg 1.000052148 1 [el] Envelope Shape

FP 0.049700599 - [mm] Fringe Period

λ 852e-6 1e-10 [mm] not estimated

f 35e3 3.5 [mm] not estimated

B 600 6e-2 [mm] not estimated

Table 4: non-nominal values (gaussian distributed) for image parameters.

par nominal value units

A 9e4 [el]

µ 0 [samples]

S 25 [samples]

D 1e4 [el]

Table 5: Nominal values for envelope parameters.

2: generation of 1000 images with noise (photon noise and RON). Parame-

ters have constant values, even if non nominal. The only parameter that

is free to vary is alpha, i.e. the mirror tilt, from which it is possible to

recovery the basic angle.

This test is aimed at giving an estimate of the variability associated at

each parameter, caused not only by noise, but also from a non nomi-

nal value of the model variables. It is based on model of Eq. 18, and

the fitting algorithms use both the IDL Curvefit function and the ML

approach.

3: generation of 1000 images with noise (photon noise and RON). Param-

eters vary over the images, except for α, which has a constant but non

nominal value (i.e., α 6= 0). It is based on model of Eq. 18, and the fitting

algorithms use both the IDL Curvefit function and the ML approach.
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4: generation of 1000 images with noise (photon noise and RON). Parame-

ters vary over the images, including α. It is based on model of Eq. 18,

and the fitting algorithms use both the IDL Curvefit function and the

ML approach.

6.2 Tests results

In this chapter we summarize the numerical results of all tests and provide

comments for each one.

6.2.1 Test 00

Results are shown in table 6. The mean error is fairly around zero for µ and

S, while there is some crosstalk between A and D.

par mean error std. dev. aver. norm. err. std. norm. err.

A -0.0755208 0.298324 -13.1351 64.0534

µ 0.000000 0.000000 0.000000 0.000000

S -6.18299e-6 6.13202e-5 -1.73280 18.2855

D 0.0771159 0.302339 16.2995 76.5564

Table 6: Estimation of envelope parameters (Test 00)

6.2.2 Test 0a

Results are shown in Table 7. Indipendently from the value of σ, the back-

ground value is estimated correctly, while none of the three available ways of

retrieving the value A of the amplitude (i.e. application of a correction fac-

tor, numerical integration, analytical error function, shown in the last three

columns) works.

6.2.3 Test 0b

Results are shown in Table 8. The numerical values are different from the

previous case, but the result is basically the same. In this case, the value

of A is overestimated rather than underestimated when σ increases. For this

reason, in the next tests the estimation of the amplitude has not been further

investigated. This is not an issue, as the amplitude has anyhow to be estimated

in the process of determining the phase shift.



6.2 Tests results 26

σ bg σbg x′0 σx′0 corrFactA Integral Err function

0.2 9999.99 2.22e-3 0.0 2.24e-6 89347.2 89673.4 89673.2

0.3 9999.99 1.1e-3 0.0 8.07e-7 89709.0 89855.0 89854.4

0.4 9999.99 1.79e-3 0.0 9.72e-7 89836.1 89918.3 89918.0

0.5 10000.0 1.69e-3 0.0 6.62e-7 89895.4 89947.9 89947.8

0.6 10000.0 8.72e-6 0.0 6.06e-9 89928.2 89964.8 89964.6

0.7 9999.99 1.47e-5 0.0 9.57e-9 89948.6 89975.8 89975.5

0.8 10000.0 8.92e-3 0.0 1.01e-6 89962.3 89982.9 89982.9

0.9 9999.99 1.28e-2 0.0 9.67e-7 89971.6 89987.9 89987.9

1.0 9999.98 3.45e-2 0.0 1.8e-6 89978.1 89991.6 89991.4

1.1 10000.0 4.36e-2 0.0 1.64e-6 89982.8 89993.9 89993.8

1.2 9999.97 6.6e-2 0.0 1.84e-6 89986.2 89995.5 89995.5

1.3 10000.1 8.67e-2 0.0 1.87e-6 89988.7 89996.8 89996.6

1.4 10000.0 9.6e-2 0.0 1.64e-6 89990.7 89997.4 89997.5

1.5 10000.3 1.58e-1 0.0 2.19e-6 89992.0 89997.8 89997.8

1.6 10000.2 1.7e-1 0.0 1.95e-6 89993.2 89998.2 89998.3

1.7 9999.81 2.59e-1 0.0 2.5e-6 89994.5 89999.6 89999.1

1.8 9999.40 2.91e-1 0.0 2.4e-6 89995.6 89999.9 89999.8

1.9 10000.4 3.73e-1 0.0 2.65e-6 89995.3 89999.2 89998.9

2.0 9999.60 4.83e-1 0.0 2.99e-6 89996.5 90000.1 90000.0

2.1 9998.45 5.83e-1 0.0 3.18e-6 89998.1 90001.3 90001.4

2.2 10001.3 8.51e-1 0.0 4.13e-6 89995.7 89998.4 89998.3

2.3 10000.8 1.01 -1.91e-6 4.38e-6 89996.4 89999.0 89998.9

2.4 10001.0 1.17 0.0 4.56e-6 89996.6 89998.6 89998.8

Table 7: Estimation of envelope parameters (Test 0a)

6.2.4 Test 01

The estimation of the parameters (in the tables, SM) shown in Table 9 for

Curvefit and Table 10 for Maximum Likelihood are good and consistent be-

tween them. The AVE values, providing an estimate of the bias, are quite

different between the two methods; it seems that estimation of the bias is not

an easy task, as it can be expected. The Fringe Period results shown in Table

11 highlight the better performances of the densified approach. The error is

underestimated, though. For each table, values not satisfing the criteria are in

boldface. The criteria parameter |b|/(µ 6= 0) is always below 1.0 · 10−4, apart
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σ bg σbg x′0 σx′0 corrFactA Integral Err function

0.2 9999.99 2.17e-3 0.0 2.2e-6 89347.2 89673.3 89673.1

0.3 9999.99 1.24e-3 0.0 9.08e-7 89709.0 89855.1 89854.4

0.4 9999.99 1.29e-3 0.0 7e-7 89836.2 89918.2 89918.1

0.5 10000.0 2.41e-3 0.0 9.42e-7 89896.9 89949.4 89949.4

0.6 10000.0 3.06e-3 0.0 8.17e-7 89938.1 89974.5 89974.5

0.7 10000.0 4.03e-3 0.0 7.05e-7 89938.1 90003.8 90004.6

0.8 10000.0 1.04e-2 0.0 1.18e-6 90019.3 90038.9 90039.9

0.9 10000.0 1.51e-2 0.0 1.14e-6 90061.0 90075.6 90077.3

1.0 10000.0 2.86e-2 0.0 1.49e-6 90100.2 90111.2 90113.4

1.1 9999.97 3.7e-2 0.0 1.39e-6 90135.8 90143.9 90146.8

1.2 9999.97 6.35e-2 0.0 1.78e-6 90167.2 90173.0 90176.5

1.3 10000.0 7.5e-2 0.0 1.62e-6 90194.5 90198.3 90202.4

1.4 9999.92 9.37e-2 0.0 1.6e-6 90218.3 90220.7 90225.2

1.5 9999.89 1.47e-1 0.0 2e-6 90238.9 90240.2 90244.8

1.6 9999.99 2.02e-1 0.0 2.31e-6 90256.5 90256.6 90261.7

1.7 9999.89 2.6e-1 0.0 2.5e-6 90272.0 90271.5 90276.7

1.8 10000.6 3.61e-1 0.0 2.96e-6 90284.7 90283.2 90288.7

1.9 10000.5 4.46e-1 0.0 3.16e-6 90296.5 90294.6 90300.1

2.0 9998.47 4.8e-1 0.0 2.96e-6 90308.6 90306.3 90312.3

2.1 9998.16 5.19e-1 0.0 2.83e-6 90317.0 90314.3 90320.2

2.2 10002.6 9.4e-1 0.0 4.55e-6 90321.7 90318.3 90324.1

2.3 9998.54 9.75e-1 1.91e-6 4.22e-6 90332.6 90329.0 90335.4

2.4 10001.8 1.11 0.0 4.30e-6 90335.8 90331.4 90337.9

Table 8: Estimation of envelope parameters (Test 0b)

for the non-densified algorithms of Fringe Period.

6.2.5 Test 1

The estimation SM of the parameters shown in Table 12 for Curvefit and Table

13 for Maximum Likelihood are good in spite of the noise and are consistent

between them. The AVE values are consistent also, apart for a high value for

bg. NSD seems correctly distributed only in the case of Maximum Likelihood,

while Curvefit provides severely underestimated errors. The Fringe Period

results shown in Table 14 do not look different from the non-noisy case.
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par SM SSD AVE STD NAE NSD |b|/(µ 6= 0)

x′0 -2.97e-8 2.31e-14 -2.97e-8 2.97e-8 -5.67e3 5.67e3 3.0e-8

y′0 -8.17e-9 5.33e-15 -8.17e-9 8.17e-9 -2.7e-2 2.7e-2 8.2e-9

σx 1.50 1.19e-7 2.38e-7 2.38e-7 2.02e2 2.02e2 1.6e-7

σy 1.50 1.90e-6 8.80e-5 8.8e-5 2.47e2 2.47e2 5.9e-5

V 1.00 0.00 1.19e-7 1.19e-7 1.80e2 1.80e2 1.2e-7

φ -3.44e-6 2.27e-12 -3.44e-6 3.44e-6 -5.20e3 5.20e3 3.4e-6

bg 1.0001e4 9.76e-3 7.27e-1 7.27e-1 1.07e2 1.07e2 7.3e-5

Table 9: Test 01 results - IDL curvefit

par SM SSD AVE STD NAE NSD |b|/(µ 6= 0)

x′0 9.41e-18 0.00 9.41e-18 9.41e-18 1.30e-13 1.30e-13 9.4e-18

y′0 -8.17e-9 5.33e-15 -8.17e-9 8.17e-9 -2.7e-2 2.7e-2 8.2e-9

σx 1.50 2.38e-7 3.58e-7 3.58e-7 3.13e-3 3.13e-3 2.4e-7

σy 1.50 0.00 9.76e-5 9.76e-5 7.84e-2 7.84e-2 6.5e-5

V 1.00 0.00 -5.96e-8 5.96e-8 -2.18e-3 2.18e-3 6.0e-8

φ -4.55e-15 2.96e-21 -4.55e-15 4.55e-15 -4.98e-13 4.98e-13 4.6e-15

bg 1.0000e4 1.07e-2 -3.61e-2 3.61e-2 -4.08e-4 4.08e-4 3.6e-6

Table 10: Test 01 results - Maximum Likelihood

6.2.6 Test 2

The estimation SM of the parameters shown in Table 15 for Curvefit and Table

16 for Maximum Likelihood are again in good agreement. The AVE values are

consistent; now both methods show a underestimation of bg. Again NSD seems

correctly distributed only in the case of Maximum Likelihood, apart for the

slightly high value for x′0, while Curvefit still provides severely underestimated

errors. The Fringe Period results shown in Table 17 are very stable through

par SM SSD AVE STD NAE NSD b/(µ 6= 0)

FP (1d) 4.9717e-2 1.86e-8 1.66e-5 1.66e-5 5.88e-1 5.88e-1 3.3e-3

FP (1d hd) 4.9700e-2 7.45e-9 8.20e-8 8.20e-8 1.29e-2 1.29e-2 1.6e-6

FP (2d) 4.9717e-2 6.33e-8 1.66e-5 1.66e-5 4.55 4.55 3.3e-3

FP (2d hd) 4.9700e-2 7.45e-9 7.08e-8 7.08e-8 9.49e-2 9.49e-2 1.4e-6

Table 11: Test 01 results - Fringe Period



6.2 Tests results 29

par SM SSD AVE STD NAE NSD

x′0 2.40e-6 7.18e-5 2.40e-6 7.18e-5 -3.10e4 1.22e6

y′0 2.92e-7 7.48e-5 2.92e-7 7.48e-5 5.11e-2 1.31e1

σx 1.50 1.22e-4 2.19e-6 1.22e-4 -6.17e2 1.06e4

σy 1.50 1.26e-3 1.12e-4 1.27e-3 1.14 1.32e1

V 1.00 3.45e-5 -2.18e-7 3.45e-5 -1.11e1 5.47e3

φ 3.00e-4 9.07e-3 3.01e-4 9.08e-3 -3.12e4 1.22e6

bg 9.999e3 8.95e1 -1.20 8.95e1 -1.32e-1 1.30e1

Table 12: Test 1 results - IDL curvefit

par SM SSD AVE STD NAE NSD

x′0 2.19e-6 7.15e-5 2.19e-6 7.15e-5 3.03e-2 9.88e-1

y′0 7.25e-7 7.33e-5 7.26e-7 7.33e-5 9.82e-3 9.92e-1

σx 1.50 1.17e-4 6.07e-7 1.17e-4 5.09e-3 1.02

σy 1.50 1.25e-3 1.04e-4 1.25e-3 8.13e-2 1.00

V 1.00 2.68e-5 -4.46e-7 2.68e-5 -1.6e-2 9.81e-1

φ 2.75e-4 9.04e-3 2.75e-4 9.04e-3 3.00e-2 9.88e-1

bg 1.0000e4 8.90e1 -6.64e-1 8.89e1 -4.26e-3 1.00

Table 13: Test 1 results - Maximum Likelihood

the tests. Now the NSD value is closer to the correct distribution, but still

one order of magnitude off the expected value of 1. There is no evidence of a

significant difference with respect to test 1 results.

6.2.7 Test 3

There is no evidence of a significant difference with respect to the previous

results, meaning that the variability of the parameters among the images is

par SM SSD AVE STD NAE NSD

FP (1d) 4.9717e-2 2.75e-7 1.66e-5 1.66e-5 5.88e-1 5.88e-1

FP (1d hd) 4.9700e-2 4.33e-7 8.10e-8 8.30-8 3.35e-2 8.85e-2

FP (2d) 4.9717e-2 2.76e-7 1.66e-5 1.66e-5 4.55 4.55

FP (2d hd) 4.9701e-2 4.41e-7 7.31e-8 7.58e-8 9.52e-2 9.86e-2

Table 14: Test 1 results - Fringe Period
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par SM SSD AVE STD NAE NSD

x′0 1.01e-6 8.30e-5 3.06e-7 1.04e-4 6.86e4 1.47e6

y′0 1.44e-2 7.50e-5 1.05e-7 7.50e-5 1.81e-2 1.31e1

σx 1.50 1.24e-4 2.10e-6 1.24e-4 4.31e1 7.10e3

σy 1.50 1.26e-3 1.20e-4 1.26e-3 1.23 1.33e1

V 8.10e-1 3.75e-5 -3.35e-7 3.74e-5 2.39e2 5.78e3

φ 7.81e-3 9.39e-3 2.11e-4 9.39e-3 -2.70e4 1.14e6

bg 9.999e3 8.93e1 -1.80 8.93e1 -2.20e-1 1.30e1

Table 15: Test 2 results - IDL curvefit

SM SSD AVE STD NAE NSD

x′0 1.32e-6 8.14e-5 6.16e-7 1.03e-4 8.43e-3 1.41

y′0 1.44e-2 7.35e-5 5.33e-7 7.35e-5 7.18e-3 9.93e-1

σx 1.50 1.19e-4 5.29e-7 1.19e-4 4.35e-3 1.03

σy 1.50 1.24e-3 1.13e-4 1.25e-3 8.89e-2 1.01

V 8.10e-1 3.36e-5 -5.11e-7 3.36e-5 -1.49e-2 9.83e-1

φ 7.85e-3 9.13e-3 2.50e-4 9.13e-3 2.71e-2 9.88e-1

bg 9.999e3 8.88e1 -1.31 8.8e1 -1.16e-2 1.00

Table 16: Test 2 results - Maximum Likelihood

either too small to be significant or not affecting the results.

6.2.8 Test 4

Again no apparent significant change with respect to the previous tests.

par SM SSD AVE STD NAE NSD

FP (1d) 4.9717e-2 3.37e-7 1.68e-5 1.67e-5 5.94e-1 5.94e-1

FP (1d hd) 4.9701e-2 2.26e-7 -1.09e-7 1.12e-7 -5.44e-2 1.42e-1

FP (2d) 4.9717e-2 3.36e-7 1.68e-5 1.68e-5 4.60e0 4.60e0

FP (2d hd) 4.9701e-2 2.36e-7 -1.20e-7 1.22e-7 -1.56e-1 1.59e-1

Table 17: Test 2 results - Fringe Period
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par SM SSD AVE STD NAE NSD

x′0 3.23e-5 7.62e-5 6.16e-5 9.79e-5 1.96e5 1.80e6

y′0 -6.36e-4 1.52e-2 2.69e-7 7.51e-5 4.67e-2 1.31e1

σx 1.50 1.25e-4 1.88e-6 1.23e-4 1.32e2 8.43e3

σy 1.50 1.26e-3 1.18e-4 1.26e-3 1.21 1.32e1

V 8.52e-1 2.87e-2 -3.76e-7 3.67e-5 -9.02e1 5.26e3

φ 5.86e-4 1.03e-1 3.73e-4 9.63e-3 -3.09e3 1.42e6

bg 9.998e3 8.92e1 -1.66 8.92e1 -1.99e-1 1.30e1

Table 18: Test 3 results - IDL curvefit

par SM SSD AVE STD NAE NSD

x′0 3.15e-5 7.20e-5 6.08e-5 9.42e-5 8.32e-1 1.29

y′0 -6.36e-4 1.52e-2 7.49e-7 7.35e-5 1.01e-2 9.93e-1

σx 1.50 1.20e-4 4.37e-7 1.19e-4 3.62e-3 1.03

σy 1.50 1.25e-3 1.11e-4 1.25e-3 8.67e-2 1.01

V 8.52e-1 2.87e-2 -3.90e-7 3.25e-5 -1.29e-2 9.85e-1

φ 4.87e-4 1.03e-1 2.74e-4 9.11e-3 2.96e-2 9.87e-1

bg 9.999e3 8.87e1 -1.12 8.87e1 -9.48e-3 1.00

Table 19: Test 3 results - Maximum Likelihood

par SM SSD AVE STD NAE NSD

FP (1d) 4.9718e-2 8.78e-6 1.67e-5 2.02e-5 5.94e-1 7.19e-1

FP (1d hd) 4.9701e-2 6.82e-6 -1.14e-7 9.87e-6 -8.46e-1 9.46

FP (2d) 4.9719e-2 8.78e-6 1.67e-5 2.02e-5 4.60 5.57

FP (2d hd) 4.9701e-2 6.82e-6 -1.23e-7 9.88e-6 -1.49e-1 1.29e1

Table 20: Test 3 results - Fringe Period
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par SM SSD AVE STD NAE NSD

x′0 2.22e-6 8.50e-5 1.51e-6 1.06e-4 8.54e4 3.95e6

y′0 -6.36e-4 1.52e-2 2.72e-7 7.51e-5 4.74e-2 1.31e1

σx 1.50 1.25e-4 1.89e-6 1.24e-4 4.62e2 1.55e4

σy 1.50 1.26e-3 1.18e-4 1.26e-3 1.21 1.32e1

V 8.52e-1 2.87e-2 -3.75e-7 3.68e-5 -9.83e1 9.11e3

φ 5.79e-4 1.03e-1 3.6e-4 9.62e-3 4.31e4 2.03e6

bg 9.998e3 8.92e1 -1.65 8.92e1 -1.98e-1 1.30

Table 21: Test 4 results - IDL curvefit

SM SSD AVE STD NAE NSD

x′0 1.47e-6 8.13e-5 7.73e-7 1.03e-4 1.05e-2 1.41

y′0 -6.36e-4 1.52e-2 7.52e-7 7.35e-5 1.01e-2 9.93e-1

σx 1.50 1.20e-4 4.47e-7 1.19e-4 3.70e-3 1.03

σy 1.50 1.25e-3 1.11e-4 1.25e-3 8.66e-2 1.01

V 8.52e-1 2.87e-2 -3.96e-7 3.25e-5 -1.31e-2 9.85e-1

φ 4.86e-4 1.03e-1 2.73e-4 9.11e-3 2.95e-2 9.87e-1

bg 9.999e3 8.87e1 -1.12 8.87e1 -9.41e-3 1.00

Table 22: Test 4 results - Maximum Likelihood

par SM SSD AVE STD NAE NSD

FP (1d) 4.9718e-2 8.78e-6 1.67e-5 2.02e-5 5.94e-1 7.19e-1

FP (1d hd) 4.9701e-2 6.82e-6 -1.14e-7 9.88e-6 -3.52e-1 1.09e1

FP (2d) 4.9718e-2 8.78e-6 1.67e-5 2.02e-5 4.60 5.56

FP (2d hd) 4.9701e-2 6.82e-6 -1.23e-7 9.88e-6 -1.44e-1 1.29e1

Table 23: Test 4 results - Fringe Period
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7 Conclusions

From the analysis of the test results, we can see that both the Maximum Like-

lihood and the Curvefit converge quickly to a local minimum. In presence of

noise on the image (photon noise) and on the parameters, the standard errors

are in some cases underestimated, as highlighted by the chosen quality esti-

mators. This is particularly true for Curvefit and Fringe Period. This can be

corrected only by choosing better weighting functions. However, the Maximum

Likelihood results are in good agreement with the expected performance and

statistical properties.


