

Configurazione dei setti del banco ottico UVCI della missione HERSCHEL/SCORE

Rapporto Tecnico n. 85 Data: 17 Aprile 2007

PREPARED BY			
Guglielmo Rossi	Dip. Astronomia e Scienza Spazio – Università di Firenze		
Luca Zangrilli	INAF – Osservatorio Astronomico di Torino		
Marco Romoli	Dip. Astronomia e Scienza Spazio – Università di Firenze		
Silvano Fineschi	INAF – Osservatorio Astronomico di Torino		

TABLE OF CONTENTS

1. INTRODUZIONE4
2. POSIZIONAMENTO DEI SETTI NEL BANCO OTTICO4
SISTEMA DI RIFERIMENTO
POSIZIONE SETTI INTERNI
APERTURE NEI SETTI
VARIAZIONI RISPETTO DOCUMENTI PRECEDENTI
3. VERIFICA DELLA NON INTERFERENZA TRA PERCORSI OTTICI E SETTI6
PERCORSI OTTICI DELLA CORONA UV E VISIBILE
PERCORSI OTTICI DELLA DIFFRAZIONE
4. CONCLUSIONI
5. ALLEGATI

REVISIONS LOG

DEL				
REV	DATE	CHANGES DESCRIPTION	PREPARED	
00	5 October 2004	Preliminary CAD design of cover and baffles positioning	S. Fineschi, D. Forno	
01	27 October 2006	Baffles coordinates definition	G. Rossi, M. Romoli	
02	17 October 2006	Apertures dia. enlargement; raytrace of optical paths	G. Rossi, M. Romoli	
03	17 April 2007	CAD export of optical paths	L. Zangrilli	

ACHRONIM LIST

BRDF	Bidirectional Reflection Distribution Function
BSDB	Bidirectional Scattering Distribution Function
EFL	Effective Focal Length
FOV	Field Of View
GA	Galileo Avionica
Μ	Magnification ratio
OA	Optical Axis
OAT	Osservatorio Astronomico di Torino
TBC	To Be Confirmed
TBD	To Be Defined
TSA	Telescope Assembly
UVCI	Ultra violet and Visible Coronographic Imager

1.INTRODUZIONE

Il disegno concettuale dei setti del telescope assembly (TSA) del coronografo UVCI per il progetto SCORE fu preliminarmente studiato in fase di progettazione del banco ottico, nel 2004 (cfr.).

La funzione dei setti è quella di separare i cammini ottici all'interno del TSA e di minimizzare la presenza di luce diffusa nel campo di vista delle varie ottiche (i.e., specchi, polarimetro, filtro).

Le posizioni dei setti sono state selezionate anche sulla base della disposizione delle componenti ottiche critiche all'interno del telescopio: ovvero, pupilla d'ingresso su M0, occultatore interno, filtro, detectors.

2.POSIZIONAMENTO DEI SETTI NEL BANCO OTTICO

SISTEMA DI RIFERIMENTO

Il sistema di riferimento usato per l'individuazione delle aperture nei setti B e C è mostrato in figura 2: l'asse x è lungo la direzione perpendicolare all'asse ottico del boom, individuato dalla congiungente dei centri delle aperture c1 (alla quale viene fissato il supporto che lo specchio M0) e b1, l'asse z è lungo la direzione dell'asse ottico del boom; lungo l'asse y si misura l'altezza dalla superficie del banco ottico. L'origine degli assi è la proiezione del centro dell'apertura c1 sul piano del banco ottico (2325 coordinata z di c1 rispetto occultatore esterno).

figura 2: rappresentazione schematica setti del banco ottico di SCORE

POSIZIONE SETTI INTERNI

Le posizioni e le dimensioni delle aperture sono state stabilite in seguito a simulazioni di ray tracing non sequenziale ottenute con Opticad versione 10 (Opticad corporation).

I setti C e B distano tra di loro 160 mm. Il setto D si estende a battuta tra i setti B(nel punto di mezzo tra le aperture b1 e b2) e C (appena oltre l'estremità del foro c2 verso c1), il setto E si estende dal setto B (a partire dal punto di mezzo tra b2 e b3) fino alla coordinata z = 405 mm (coordinata x invariata rispetto al disegno CGS). Il setto A è rimosso.

APERTURE NEI SETTI

Vedi Tabella 1.

Riferimento apertura	Raggio apertura (mm)	Posizione apertura x (mm)	Posizione apertura y (mm)	Posizione apertura z (mm)
$c2^1$	Ellittica ² 86X69	140	69	0
b1	28	0	69	160
b2	33	64.5	69	160
b3	22	129	69	160

Tabella 1: posizione e dimensioni delle aperture nei setti.

VARIAZIONI RISPETTO DOCUMENTI PRECEDENTI

Sono stati modificati i raggi di apertura di c2, b1, b2, b3. L'apertura c1 viene definita a parte in quanto fornisce il supporto per la montatura dello specchio M0. I setti D ed E sono modificati di conseguenza a

3.VERIFICA DELLA NON INTERFERENZA TRA PERCORSI OTTICI E SETTI

In questa sezione vengono mostrati i disegni CAD dei percorsi ottici, intesi come inviluppo solidificato dei raggi provenienti da sorgenti puntiformi poste agli estremi del campo di vista in corona, nel caso dell'analisi del percorso geometrico della luce proveniente dalla corona solare, relativi al cammino UV e a quello visibile. Nel caso dell'analisi della luce diffusa strumentale, vengono considerate sorgenti puntiformi poste e al bordo dell'occultatore esterno e del diaframma in un caso, e della pupilla d'ingresso (foro di M0) nell'altro. I disegni CAD dei percorsi ottici sono stati combinati con quelli meccanici del TSA, inclusivo dei setti, al fine di verificare la non interferenza tra i persorsi ottici di diffrazione e i setti.

PERCORSI OTTICI DELLA CORONA UV E VISIBILE

Vengono qui mostrate delle figure dei file CAD dei percorsi ottici dei canali UV e visibile.

¹ Coordinate della posizione dell'apertura riferita all'intersezione degli assi dell'ellisse.

² (Asse maggiore) X (asse minore).

PERCORSI OTTICI DELLA DIFFRAZIONE

Nella tabella che segue sono indicate le coordinate dei punti sorgente posti al bordo del diaframma dell'occulatore esterno (EO) per verificare la clearance delle aperture dei setti.

Campo	Bordo del diaframma EO		Campo	Bordo di EO	
	altezza in x [mm]	altezza in y [mm]		altezza in x [mm]	altezza in y [mm]
1	0	53.49	5	0	31.01
2	53.49	0	6	31.01	0
3	0	-53.49	7	0	-31.01
4	-53.49	0	8	-31.01	0

Tabella 2Campi utilizzati per la verifica del percorso ottico dai bordi dell'occultatore esterno EO

Nelle figure che seguono vengono fatti vedere solamente i percorsi ottici e le superfici ottiche, e non il passaggio attraverso le aperture, che comunque è stato verificato montando i disegni CAD dei percorsi ottici nel CAD meccanico dell'intero strumento. E' stato quindi verificato che non ci siano interferenze tra i raggi provenienti dall'occultatore esterno EO e dal bordo interno di M0 con i setti del banco ottico di UVCI.

Nella tabella che segue sono indicate le coordinate dei punti sorgente posti al bordo interno di M0.

Campo	Bordo interno di M0			
	altezza in x [mm]	altezza in y [mm]		
1	0	17.99		
2	0	-17.99		
3	17.99	0		
4	-17.99	0		

Tabella **3Campi utilizzati per la verifica del** percorso ottico dal bordo interno di M0

Cod. OATO_TR_85 Page 9of 11 Rev. 3 Date 17/04/2007

Seguono le figure con i percorsi ottici dal bordo interno di M0 fino all'occultatore interno e alla trappola di Lyot. Va tenuto conto che il percorso ottico a valle dell'occultatore interno non appare (nella figura) opportunamente vignettato dall'occultatore interno (IO) e dal suo diaframma, a causa di un'inevitabile carenza nella solidificazione dei raggi come superfici di rivoluzione. Questo fatto verrà ripreso più avanti quando verrà mostrato il footprint ZEMAX dei raggi incidenti sull'occultatore interno e quello relativo all'apertura C2 del baffle C.

La clearance dall'apertura C2, ovvero che non ci siano raggi diffratti dal bordo interno di M0 che incontrino il setto C senza passare per l'apertura C2, è stata verificata con ZEMAX tracciando i raggi dal bordo di M0 e andando a vedere i footprint all'altezza dell'occultatore interno e dell'apertura C2, vedi figure seguenti. Si osserva che tutti i raggi vengono opportunamente vignettati per un diaframma dell'occultatore interno di circa 30[mm] di raggio, mentre il setto C non interseca alcun raggio diretto verso la trappola di Lyot, avendo l'apertura C2 posizionamento e dimensioni opportuni.

Ó	SCORE	-	Cod. Page Rev. Date	OATO_TR_85 10of 11 3 17/04/2007	
SCALE: 53.0000 MILLIMETERS					
PRERTURE DIAMETER: 33 UUCI B EFL = 470 MM THU FEB 15 2007 SURFACE 20 LCS PAFEL RAY X MIN = -11,4122 HMX REDUS = 11,4122 HMX REDUS = 11,4122 Footprint diagram d	RAYS THRDUGH = 4.28% FODTPRINT DIAGRAM E C2 RAY X MAX = 11.8422 RAY Y MAX = 15.7112 UKILD.T.WWL.DOTR.BHTLELVOI.20K CONFIGURATION 2 DF 3 lei raggi passanti per l'apertura C2 e diretti verso				
Footprint diagram d	lei raggi passanti per l'apertura C2 e diretti verso la trappola di Lyot				

4.CONCLUSIONI

I setti del TSA di UVCI sono stati disposti in maniera da:

- 1. isolare le componenti ottiche da percorsi di luce diffratta non specularmente;
- 2. senza interferirire con i percorsi specularmente riflessi del segnale coronale e della luce diffratta dall'occultatore estero bloccata dall'occultatore interno e dalla pupilla d'ingresso su M0 bloccata in parte dal diaframma esterno dell'IO.

Dall'analisi svolta, la specifica di cui al punto 2 risulta soddisfatta. La verifica del punto 1 richiederà un'analisi non sequenziale della luce diffusa.

Le dimensioni del diaframma esterno dell'IO sono fissate a non meno di 30[mm] di raggio perchè si abbia un vignettamento opportuno del fascio di diffrazione dalla pupilla d'ingresso su M0.

5.ALLEGATI

Elenco dei file ZEMAX e CAD usati per l'analisi:

- uvci_07_UV+VL+conf_Tilt.ZMX
- uvci_07_diffr_conf.ZMX
- uvci_0.7_UV_conf_beam_4fields.STP
- uvci_0.7_VL_conf_beam_4fields.STP
- uvci_0.7_UV+VL_conf_5_mod2_EO.STP
- uvci_0.7_UV+VL_conf_6_mod_4fields.STP
- uvci_0.7_UV+VL_conf_6_mod_4fields_IO.STP

Sito web dove possono essere scaricati:

• ftp.to.astro.it/SCORE/disegni/